光泵磁力仪频率信号高精度测定技术实现

何朝博 滕云田 胡星星

何朝博,滕云田,胡星星. 2021. 光泵磁力仪频率信号高精度测定技术实现. 地震学报,43(2):245−254 doi: 10.11939/jass.20200091
引用本文: 何朝博,滕云田,胡星星. 2021. 光泵磁力仪频率信号高精度测定技术实现. 地震学报,43(2):245−254 doi: 10.11939/jass.20200091
He Z B,Teng Y T,Hu X X. 2021. Realization of high-precision measurement technology for frequency signal of optically pumped magnetometer. Acta Seismologica Sinica,43(2):245−254 doi: 10.11939/jass.20200091
Citation: He Z B,Teng Y T,Hu X X. 2021. Realization of high-precision measurement technology for frequency signal of optically pumped magnetometer. Acta Seismologica Sinica43(2):245−254 doi: 10.11939/jass.20200091

光泵磁力仪频率信号高精度测定技术实现

doi: 10.11939/jass.20200091
基金项目: 中国地震局地球物理研究所基本科研业务费专项(DQJB19B22)资助
详细信息
    通讯作者:

    滕云田,e-mail:tengyt@cea-igp.ac.cn

  • 中图分类号: P318.6

Realization of high-precision measurement technology for frequency signal of optically pumped magnetometer

  • 摘要: 针对井下弱磁观测环境狭小,测量精度要求高,但方便实时上传数据,可实现自动测量等特点,设计并制作了一种适用于井下绝对观测的氦光泵磁力仪单片机的频率计。频率计基于Cortex-M3内核的ARM芯片,通过定时器的外部时钟模式进行定时计数,在中断函数中进行计算,得到信号频率。多次实验后,为进一步提高测量精度,使用32 MHz有源温补晶振为芯片提供主频信号,提高了主频精度,减少程序对CPU的资源占用率。实验结果表明:频率计精度较高,满足项目需求。系统误差稳定,在840.70 kHz—1.96 MHz的弱磁测量范围内,误差均为1 Hz,易结合误差原因通过软件补偿实现高精度测量。

     

  • 图  1  输入捕获模式测频

    Figure  1.  Input capture mode measurement

    图  2  频率计框图

    Figure  2.  Frequency meter block diagram

    图  3  光泵磁力仪流程图

    Figure  3.  Optically pumped magnetometer flow chart

    图  4  二定时器法框图

    Figure  4.  Block diagram of two timers method

    图  5  四定时器法框图

    Figure  5.  Block diagram of four timers method

    图  6  中断服务函数带来的系统误差

    Figure  6.  System error caused by ISR

    表  1  二定时器法主要配置参数

    Table  1.   Main configuration parameters of two timers method

    寄存器名称TIM3TIM2
    TIMx_ARR65536-160000-1
    TIMx_PSC01200-1
    下载: 导出CSV

    表  2  四定时器法主要配置参数

    Table  2.   Main configuration parameters of four timers method

    寄存器名称TIM3TIM4TIM8TIM2
    TIMx_ARR65536-165536-150000-120-1
    TIMx_PSC0072-10
    下载: 导出CSV

    表  3  同源实验结果

    Table  3.   Experiment result using the same signal source

    输入信号/kHz二定时器法 四定时器法
    测量值/Hz绝对误差/Hz相对误差 测量值/Hz绝对误差/Hz相对误差
    62.5 62 500 0 0 62 500 0 0
    250 250 000 0 0 25 0000 0 0
    500 499 999 1.0 2.0×10−6 500 000 1.0 2.0×10−6
    1000 999 997 3.0 3.0×10−6 999 999 1.0 1.0×10−6
    2000 1 999 993 7.0 3.5×10−6 1 999 999 1.0 5.0×10−7
    下载: 导出CSV

    表  4  独立有源温补晶振作为信号源时的实验结果

    Table  4.   Experiment results using independent active TCXO as signal source

    输入信号/kHz实际测量值/Hz绝对误差/Hz相对误差
    1 000 999 999 1 1.0×10−6
    100 000 0 0
    2 000 1 999 999 1 5.0×10−7
    3 000 2 999 998 1 3.3×10−7
    2 999 999 2 6.7×10−7
    下载: 导出CSV

    表  5  高精度信号发生器作为信号源时的实验结果

    Table  5.   Experiment results using high-precision signal generator as signal source

    输入信号/kHz四定时器法测量/Hz绝对误差/Hz相对误差输入信号/kHz四定时器法测量/Hz绝对误差/Hz相对误差
    500 500 000 0 0 2 200 2 199 999 1.0 4.5×10−7
    600 599 999 1.0 1.7×10−6 2 300 2 299 999 1.0 4.3×10−7
    700 699 999 1.0 1.4×10−6 2 400 2 399 999 1.0 4.2×10−7
    800 799 999 1.0 1.3.×10−6 2 500 2 499 999 1.0 4.0×10−7
    900 899 999 1.0 1.1×10−6 2 600 2 599 999 1.0 3.8×10−7
    1 000 999 999 1.0 1.0×10−6 2 700 2 699 999 1.0 3.7×10−7
    1 500 1 499 999 1.0 6.7×10−7 2 800 2 799 999 1.0 3.6×10−7
    2 000 1 999 999 1.0 5.0×10−7 2 900 2 899 999 1.0 3.4×10−7
    2 100 2 099 999 1.0 4.7×10−7 3 000 2 999 999 1.0 3.3×10−7
    下载: 导出CSV

    表  6  微波频率计超高频段测量的实验结果

    Table  6.   Experiment results of microwave frequency meter in ultra-high frequency measurement

    输入频率/Hz实测频率/Hz绝对误差/Hz相对误差
    5 000 000 0005 000 000 373.12373.127.5×10−8
    5 100 000 0005 100 000 326.17326.176.4×10−8
    5 270 000 0005 269 999 878.63121.372.3×10−8
    5 520 000 0005 520 000 061.0861.081.1×10−8
    5 603 000 0005 603 000 047.0347.038.4×10−9
    下载: 导出CSV

    表  7  CPLD频率计中频测量的实验结果

    Table  7.   Experiment results of frequency memter of CPLD in intermediate frequency measurement

    输入频率/Hz实测频率/Hz绝对误差/Hz相对误差
    56 000.00056 000.0000
    104 523.687104 522.001.6871.6×10−5
    504 258.741504 252.036.7111.3×10−5
    774 519.638774 508.0011.6381.5×10−5
    1 000 000.000999 986.0014.0001.4×10−5
    下载: 导出CSV

    表  8  FPGA频率计中低频段测量的实验结果

    Table  8.   Experimental results of FPGA frequency memter in low frequency range measurement

    输入频率/Hz实测频率/Hz绝对误差/Hz相对误差
    1 0009991.01.0×10−3
    10 00010 00000
    20 00020 0011.05.0×10−5
    200 000200 0044.02.0×10−5
    下载: 导出CSV

    表  9  软件校正后以独立的有源温补晶振作为信号源

    Table  9.   Independent active TCXO as signal source with software calibration

    输入信号/kHz实际测量值/kHz绝对误差/Hz相对误差
    1 0001 000.00000
    2 0002 000.00000
    3 0002 999.99900
    3 000.000 1.03.3×10−7
    下载: 导出CSV
  • 胡睿帆. 2017. 数字式氦光泵磁力仪的工程样机设计[D]. 长春: 吉林大学: 10–11.
    Hu R F. 2017. Design of Engineering Prototype for Digital Helium Optically Pumped Magnetometer[D]. Changchun: Jilin University: 10–11 (in Chinese).
    胡星星,滕云田,张炼,王晓美,谢凡. 2011. 井下磁力计的研制[J]. 地球物理学进展,26(5):1849–1858. doi: 10.3969/j.issn.1004-2903.2011.05.042
    Hu X X,Teng Y T,Zhang L,Wang X M,Xie F. 2011. Design of borehole magnetometer[J]. Progress in Geophysics,26(5):1849–1858 (in Chinese).
    马献果,焦阳. 2004. 频率测量方法的改进[J]. 仪器仪表学报,25(增刊):120–121.
    Ma X G,Jiao Y. 2004. Improvement on traditional frequency measurement methods[J]. Chinese Journal of Scientific Instrument,25(S1):120–121 (in Chinese).
    任烨,周华根,刘佳敏,尹继尧. 2012. 上海崇明长江农场深井综合地震观测系统地磁观测数据质量分析[J]. 地震研究,35(3):353–359. doi: 10.3969/j.issn.1000-0666.2012.03.010
    Ren Y,Zhou H G,Liu J M,Yin J Y. 2012. Quality analysis of geomagnetic observation data recorded by comprehensive seismic observation system in deep borehole on Changjiang farm in Shanghai[J]. Journal of Seismological Research,35(3):353–359 (in Chinese).
    孙敏,黎敏强,陈中平,王占奎. 2013. 一种宽温高精度温补晶振的研制[J]. 电子科技,26(8):90–92. doi: 10.3969/j.issn.1007-7820.2013.08.029
    Sun M,Li M Q,Chen Z P,Wang Z K. 2013. A high precision temperature compensated crystal oscillator in wide temperature range[J]. Electronic Science and Technology,26(8):90–92 (in Chinese).
    王永超. 2012. 光泵磁力仪的频率采集系统的设计与实现[D]. 武汉: 武汉理工大学: 10–43.
    Wang Y C. 2012. Optical Pumping Magnetometer Frequency Acquisition System Design and Implementation[D]. Wuhan: Wuhan University of Technology: 10–43 (in Chinese).
    谢尚豪,张硕,许波. 2018. 一种高精度频率测量电路设计[J]. 电子测量技术,41(18):115–121.
    Xie S H,Zhang S,Xu B. 2018. Design of high precision frequency measurement circuit[J]. Electronic Measurement Technology,41(18):115–121 (in Chinese).
    许军. 1998. 以单片机为核心的测频系统测量误差[J]. 工业仪表与自动化装置,(5):37–40.
    Xu J. 1998. Measurement error of frequency measurement system based on single chip microcomputer[J]. Industrial Instrumentation &Automation,(5):37–40 (in Chinese).
    徐纪人,赵志新. 2009. 深井地球物理观测的最新进展与中国大陆科学钻探长期观测[J]. 地球物理学进展,24(4):1176–1182. doi: 10.3969/j.issn.1004-2903.2009.04.003
    Xu J R,Zhao Z X. 2009. Recent advance of borehole geophysical observation and Chinese continental scientific drilling long-term observatory at depth[J]. Progress in Geophysics,24(4):1176–1182 (in Chinese).
    姚休义,滕云田,杨冬梅,姚远,陈俊. 2016. 地磁观测数据重构技术研究[J]. 地震学报,38(6):878–888. doi: 10.11939/jass.2016.06.007
    Yao X Y,Teng Y T,Yang D M,Yao Y,Chen J. 2016. On reconstruction technique of geomagnetic observation data[J]. Acta Seismologica Sinica,38(6):878–888 (in Chinese).
    张前毅. 2007. 基于CPLD的微波频率计研究[D]. 成都: 电子科技大学: 44.
    Zhang Q Y. 2007. Research on Microwave Frequency Meter Based on CPLD[D]. Chengdu: University of Electronic Science and Technology of China: 44 (in Chinese).
    张振宇,程德福,王君,周志坚. 2011a. 光泵磁力仪中压控振荡器的设计与实现[J]. 仪器仪表学报,32(2):279–283.
    Zhang Z Y,Cheng D F,Wang J,Zhou Z J. 2011a. Design and implementation of the voltage controlled oscillator in optically pumped magnetometer[J]. Chinese Journal of Scientific Instrument,32(2):279–283 (in Chinese).
    张振宇,程德福,王君,周志坚,连明昌. 2011b. 光泵磁力仪中磁共振光学检测方法研究[J]. 吉林大学学报(信息科学版),29(3):252–257.
    Zhang Z Y,Cheng D F,Wang J,Zhou Z J,Lian C M. 2011b. Research of magnetic resonance’s optical detection method in optically pumped magnetometer[J]. Journal of Jilin University (Information Science Edition),29(3):252–257 (in Chinese).
    张振宇,程德福,连明昌,周志坚,王君. 2011c. 氦光泵磁力仪信号的分析及检测[J]. 仪器仪表学报,32(12):2656–2661.
    Zhang Z Y,Cheng D F,Lian M C,Zhou Z J,Wang J. 2011c. Analysis and detection of 4He optically pumped magnetometer signal[J]. Chinese Journal of Scientific Instrument,32(12):2656–2661 (in Chinese).
    张振宇,程德福,连明昌,周志坚,王君. 2011d. 氦光泵磁力仪信号检测控制回路的设计[J]. 电子测量与仪器学报,25(4):366–371.
    Zhang Z Y,Cheng D F,Lian M C,Zhou Z J,Wang J. 2011d. Design of 4He optically pumped magnetometer’s signal detection and control loop[J]. Journal of Electronic Measurement and Instrument,25(4):366–371 (in Chinese). doi: 10.3724/SP.J.1187.2011.00366
    Chéron B,Gilles H,Hamel J,Moreau O,Noël E. 1996. 4He optical pumping with frequency modulated light[J]. J Phys Ⅱ,EDP Sci,6(2):175–185.
    Gilles H,Hamel J,Chéron B. 2001. Laser pumped 4He magnetometer[J]. Rev Sci Instrum,72(5):2253–2260. doi: 10.1063/1.1364667
    McGregor D D. 1987. High-sensitivity helium resonance magnetometers[J]. Rev Sci Instrum,58(6):1067–1076. doi: 10.1063/1.1139609
    Němec F,Santolík O,Parrot M,Berthelier J J. 2008. Spacecraft observations of electromagnetic perturbations connected with seismic activity[J]. Geophys Res Lett,35(5):L05109.
  • 加载中
图(6) / 表(9)
计量
  • 文章访问数:  478
  • HTML全文浏览量:  199
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-01
  • 修回日期:  2020-09-01
  • 网络出版日期:  2021-04-26
  • 刊出日期:  2021-07-07

目录

    /

    返回文章
    返回