华北地区深井水位对飑线天气过程的水力响应

杨小林, 冯静, 苏利娜, 杨锦玲

杨小林,冯静,苏利娜,杨锦玲. 2024. 华北地区深井水位对飑线天气过程的水力响应. 地震学报,46(4):663−676. DOI: 10.11939/jass.20220214
引用本文: 杨小林,冯静,苏利娜,杨锦玲. 2024. 华北地区深井水位对飑线天气过程的水力响应. 地震学报,46(4):663−676. DOI: 10.11939/jass.20220214
Yang X L,Feng J,Su L N,Yang J L. 2024. Hydraulic responses of groundwater-level in deep wells to the passage of a squall line in North China. Acta Seismologica Sinica46(4):663−676. DOI: 10.11939/jass.20220214
Citation: Yang X L,Feng J,Su L N,Yang J L. 2024. Hydraulic responses of groundwater-level in deep wells to the passage of a squall line in North China. Acta Seismologica Sinica46(4):663−676. DOI: 10.11939/jass.20220214

华北地区深井水位对飑线天气过程的水力响应

基金项目: 国家自然科学基金(42104091)、陕西省自然科学基础研究(2022JQ-225)和中国地震局2022年度震情跟踪任务(2022020203)共同资助
详细信息
    通讯作者:

    杨小林,博士,高级工程师,主要从事地下流体观测和解释工作,e-mail:yang-xiaolin123@163.com

  • 中图分类号: P315.723

Hydraulic responses of groundwater-level in deep wells to the passage of a squall line in North China

  • 摘要:

    为探讨华北地区飑线天气对深井水位干扰的特征和影响机制,以2017年9月21日发生在华北中部的一次飑线事件为例,使用时频分析和线性回归等方法系统地诊断了此次飑线对无极、辛集、永清和宁晋等四口千米级深井的水位扰动特征。结果表明:在宏观层面,飑线过境各深井时会引起气压快速涌升,在气压的激励下,深井水位出现了即时的脉冲状波动,该干扰的持续时间可长达127 min;此次飑线过程中周期性气压波动的主频段为15—25 cpd,在该频段内,各深井水位与气压扰动的形态高度负相关,相关系数均低于−0.95,气压系数主要集中在−4.9—−6.9 mm/hPa之间。

    Abstract:

    Since the Mesozoic, the North China has experienced intensive seismic activity. Given its special seismo-tectonic background and unusually high level of seismic potential, a network of deep wells, primarily monitoring fault and crustal deformation precursors to destructive earthquakes, has been deployed in this area since late 1960s. Although these deep well-aquifer systems can effectively capture the tectonic transients, numerous spike-like signals associated with non-tectonic sources are always recorded in the groundwater levels; however, their physical mechanism have not been confirmed on a case-by-case basis up to now.

    The squall line is a common type of meso-scale convective system usually defined as a group of violent thunderstorms or storm cells arranged in the form of a narrow (a few tens of kilometers) or long (several hundreds of kilometers) line in a Doppler radar. Furthermore, the typical life-span of a squall line can last several hours, and its propagation speed is approximately 60 km/h. The surface area affected by squall line is typically accompanied by abrupt changes in surface pressure and air temperature.

    Squall lines occur with a high frequency in North China, but it is still unclear that how this kind of meso-scale severe weather disturbs the groundwater levels in deep wells. In view of the current situation, a target research is needed to reveal the features of hydraulic responses. On 21 September 2017, a squall line passed across the central North China, and significantly disturbed the groundwater levels in four wells deeper than 1 km, which are Wuji, Xinji, Yongqing, and Ningjin wells. Here we mainly adopt the spectrogram and linear regression methods to systematically examine the unique signals stimulated by this squall line. The results show that: ① From a macro perspective, the barometric pressures recorded at the deep wells can abruptly jump induced by the passage of squall line; instantly, the strong pulse-like disturbances were observed on groundwater level graphs associated with pressure jumps; ② The duration of disturbance could last as long as about 127 minutes for this case; ③ In the highfrequency band, the barometric waves induced by squall line have a period between 15 cpd (cycles per day) and 25 cpd. Correspondingly, the cross-correlation coefficients between barometric waves and groundwater changes can be lower than −0.95 for the four deep wells in this special frequency band. Furthermore, the barometric pressure response coefficients vary from about −4.9 mm/hPa to −6.9 mm/hPa for the four wells, determined as the linear regression coefficient between groundwater level and barometric pressure in the 15−25 cpd band-passed data. Our analysis shows that this work can extend our understating of the signatures caused by squall line in the field of groundwater research. Additionally, owing to the large amplitude of barometric waves, the squall line can help quantify the precise responses of groundwater levels in deep wells to barometric pressures in the high frequency band.

  • 图  4   飑线过境时各井气压高频振荡的时频图

    (a) 无极井;(b) 辛集井;(c) 永清井;(d) 宁晋井

    Figure  4.   Spectrograms of the high-frequency fluctuations of barometric pressures caused by the squall line

    (a) Wuji well;(b) Xinji well;(c) Yongqing well;(d) Ningjin well

    图  1   2017年9月21日飑线主体的演变过程(杨晓亮,杨敏,2020)以及华北地区深井和气象站的分布

    Figure  1.   The passage of the squall line on 21 September 2017 (Yang,Yang,2020) and distribution of deep wells (black triangles) and meteorological stations (green triangles) in North China

    图  2   飑线过境时各井记录到的静水位、气压和气温的原始变化

    (a) 无极井;(b) 辛集井;(c) 永清井;(d) 宁晋井

    Figure  2.   The original changes of groundwater levels (black traces),barometric pressures (green traces),and air temperatures (red traces) in response to the passage of the squall line (denoted by blue stripe) for the four wells

    (a) Wuji well;(b) Xinji well;(c) Yongqing well;(d) Ningjin well

    图  3   2017年9月21日18—24时各测项对飑线过境时响应的细节特征

    蓝色垂直虚线表示飑线影响的起始和结束时刻;①,②和③依次表示飑前低压、雷暴高压和尾流低压时段。 (a) 无极井;(b) 辛集井;(c) 永清井;(d) 宁晋井

    Figure  3.   The detailed variations of groundwater levels (black traces),barometric pressures (green traces),and air temperatures (red traces) in response to the passage of the squall line from 18:00 to 24:00 on 21 September 2017 for the four wells

    The blue vertical dashed lines represent the start (left) and end (right) times of the passage of squall line,respectively. The green short thick-lines with signs of ①,②,and ③ indicate the pre-squall mesolow,a squall mesohigh,and a wake low,respectively. (a) Wuji well;(b) Xinji well;(c) Yongqing well;(d) Ningjin well

    图  5   在15—25 cpd频段内各深井的水位和气压波曲线对比

    (a) 无极井;(b) 辛集井;(c) 永清井;(d) 宁晋井

    Figure  5.   Detailed comparison of the fluctuations of groundwater levels (red lines) with barometric pressure changes (green lines) as a squall line passed the four deep wells

    (a) Wuji well;(b) Xinji well;(c) Yongqing well;(d) Ningjin well

    图  6   15—25 cpd频段内各深井的水位与气压的互相关系数

    滞后时间为正,表示水位滞后气压,反之为超前

    Figure  6.   The cross-correlation coefficients between the band-pass filtered (15−25 cpd) groundwater levels and barometric pressures for the deep wells

    The negative lag time means that groundwater level advances the barometric pressure,while the positive lag time means the groundwater level lags behind the barometric pressure

    图  7   消除时滞效应后井水位与气压的一元线性回归方程(15—25 cpd频段内)

    (a) 无极井;(b) 辛集井;(c) 永清井;(d) 宁晋井

    Figure  7.   The simple linear regression relationships between groundwater levels and barometric pressures after eliminating time delays in the 15−25 cpd frequency band

    (a) Wuji well;(b) Xinji well;(c) Yongqing well;(d) Ningjin well

    表  1   四口深井及其周邻气象站概况

    Table  1   General information for the four deep wells and three neighboring meteorological stations

    井名 套管
    直径
    /cm
    地下水类型 井深/m 井孔与含水层
    连通深度
    /m
    含水层岩性 水位仪、气压仪
    和气温仪的型号
    相邻
    气象站
    与气象
    站间距
    /km
    2017年9月
    21日降雨量
    /mm
    无极 不详 岩溶裂隙承压水 2984.50 23332984 灰岩,白云岩 ZKGD-3000NL,
    RTP-Ⅱ
    石家庄 53 1.2
    辛集 24.45 岩溶裂隙承压水 2052.37 15392052 白云岩 石家庄 67 1.2
    永清 21.60 岩溶承压水 1274.11 10701274 灰岩,白云岩 霸州 12 0.0
    宁晋 30.00 岩溶裂隙承压水 2003.78 1899—1919 砂质灰岩 南宫 7 0.0
    下载: 导出CSV

    表  2   四口深井的水位、气压和气温对飑线过程的响应变化

    Table  2   Temporal variations of groundwater levels,barometric pressures,and air temperatures in response to the passage of the squall line for the four deep wells

    井名 观测
    物理量
    飑线演变的主过程 变化形态 最大变幅
    开始时刻
    h:min
    峰值时刻
    h:min
    结束时刻
    h:min
    历时/min
    无极 静水位 19:09 20:00 20:42 93 脉冲状 10 mm
    气压 20:13 涌升 1.3 hPa
    气温 20:39 骤降 8.5 ℃
    辛集 静水位 19:48 20:40 21:27 99 脉冲状 18 mm
    气压 20:40 涌升 2.3 hPa
    气温 21:27 骤降 7.0 ℃
    永清 静水位 20:10 21:17 22:17 127 脉冲状 13 mm
    气压 21:16 涌升 1.5 hPa
    气温 22:17 骤降 5.4 ℃
    宁晋 静水位 19:54 20:59 21:36 102 脉冲状 12 mm
    气压 20:49 涌升 2.6 hPa
    气温 21:36 骤降 7.2 ℃
    下载: 导出CSV

    表  3   各深井水位与气压在15—25 cpd频段内的相关系数及时滞

    Table  3   The cross-correlation coefficients between the 15−25 cpd band-passed groundwater levels and barometric pressures for the four deep wells as well as corresponding time delays

    井名相关系数井水位滞后气压的时间/min井名相关系数井水位滞后气压的时间/min
    无极−0.956 01−10永清−0.992 131
    辛集−0.994 12−1宁晋−0.992 1410
    下载: 导出CSV
  • 毕金孟,蒋长胜. 2019. 华北地区地震序列参数的分布特征[J]. 地球物理学报,62(11):4300–4312. doi: 10.6038/cjg2019M0453

    Bi J M,Jiang C S. 2019. Distribution characteristics of earthquake sequence parameters in North China[J]. Chinese Journal of Geophysics,62(11):4300–4312 (in Chinese).

    车用太,赵文忠,鱼金子,刘成龙. 2006. 京津冀地区井水位的数字化观测及其地震前兆监测效能评估[J]. 地震,26(4):103–112. doi: 10.3969/j.issn.1000-3274.2006.04.014

    Che Y T,Zhao W Z,Yu J Z,Liu C L. 2006. Digitalized well-water-level observation and monitoring efficiency evaluation of earthquake precursor in the Beijing-Tianjin-Hebei region[J]. Earthquake,26(4):103–112 (in Chinese).

    陈晓欣,俞小鼎,王秀明. 2022. 中国大范围雷暴大风事件(Derechos)研究:时空分布、环境背景和对流系统形态特征[J]. 气象学报,80(1):67–81. doi: 10.11676/qxxb2021.067

    Chen X X,Yu X D,Wang X M. 2022. Investigation of Derechos in China:Spatiotemporal distribution,environmental characteristics,and morphology of Derechos producing convective systems[J]. Acta Meteorologica Sinica,80(1):67–81 (in Chinese).

    丁一汇,李鸿洲,章名立,李吉顺,蔡则怡. 1982. 我国飑线发生条件的研究[J]. 大气科学,6(1):18–27. doi: 10.3878/j.issn.1006-9895.1982.01.03

    Ding Y H,Li H Z,Chang M L,Li J S,Cai Z Y. 1982. A study on the genesis conditions of squall-line in China[J]. Scientia Atmospherica Sinica,6(1):18–27 (in Chinese).

    董守玉,贾化周,万迪堃,秦清娟. 1987. 井水位气压系数的探讨[J]. 地震研究,10(1):63–70.

    Dong S Y,Jia H Z,Wan D K,Qin Q J. 1987. Study of the atmospheric pressure coefficient of well water level[J]. Journal of Seismological Research,10(1):63–70 (in Chinese).

    顾申宜,张慧,解晓静,刘阳,叶向顶. 2012. 海南井水位对热带气旋响应特征分析[J]. 地震学报,34(5):716–724. doi: 10.3969/j.issn.0253-3782.2012.05.013

    Gu S Y,Zhang H,Xie X J,Liu Y,Ye X D. 2012. Analysis on features of well water response in Hainan Province to tropical cyclones[J]. Acta Seismologica Sinica,34(5):716–724 (in Chinese).

    韩文英,梁丽环,尹宏伟,郭学增. 2017. 一次气压扰动引起的水位变化[J]. 防灾减灾学报,33(4):59–65.

    Han W Y,Liang L H,Yin H W,Guo X Z. 2017. A pressure disturbance caused by the water level change[J]. Journal of Disaster Prevention and Reduction,33(4):59–65 (in Chinese).

    扈忠慈,陆长荣,白乃英,孙文起. 1987. 华北平原飑线与一般对流活动发生条件的对比分析[J]. 气象,13(8):8–13. doi: 10.7519/j.issn.1000-0526.1987.08.002

    Hu Z C,Lu C R,Bai N Y,Sun W Q. 1987. Analysis of occurrence of squall line and commonly convective activity over North China[J]. Meteorological Monthly,13(8):8–13 (in Chinese).

    李鸿洲,蔡则怡,徐元泰. 1999. 华北强飑线生成环境与地形作用的数值试验研究[J]. 大气科学,23(6):713–721. doi: 10.3878/j.issn.1006-9895.1999.06.08

    Li H Z,Cai Z Y,Xu Y T. 1999. A numerical experiment of topographic effect on genesis of the squall line in North China[J]. Chinese Journal of Atmospheric Sciences,23(6):713–721 (in Chinese).

    李文英,张清荣,平建军. 1994. 华北地区地震短临异常综合标志及预报指标的研究[J]. 地震,14(1):23–30.

    Li W Y,Zhang Q R,Ping J J. 1994. Comprehensive mark of short-term and impending anomaly in North China and study on prediction index[J]. Earthquake,14(1):23–30 (in Chinese).

    柳畅,石耀霖,郑亮,朱伯靖. 2012. 三维黏弹性数值模拟华北盆地地震空间分布与构造应力积累关系[J]. 地球物理学报,55(12):3942–3957. doi: 10.6038/j.issn.0001-5733.2012.12.007

    Liu C,Shi Y L,Zheng L,Zhu B J. 2012. Relation between earthquake spatial distribution and tectonic stress accumulation in the North China Basin based on 3D visco-elastic modelling[J]. Chinese Journal of Geophysics,55(12):3942–3957 (in Chinese).

    沈杭锋,方桃妮,蓝俊倩,翟国庆,苏涛. 2019. 一次强飑线过程极端大风的中尺度分析[J]. 气象学报,77(5):806–822. doi: 10.11676/qxxb2019.052

    Shen H F,Fang T N,Lan J Q,Zhai G Q,Su T. 2019. Mesoscale analysis of the extremely damaging gale in a severe squall line[J]. Acta Meteorologica Sinica,77(5):806–822 (in Chinese).

    盛杰,郑永光,沈新勇. 2020. 华北两类产生极端强天气的线状对流系统分布特征与环境条件[J]. 气象学报,78(6):877–898. doi: 10.11676/qxxb2020.069

    Sheng J,Zheng Y G,Shen X Y. 2020. Climatology and environmental conditions of two types of quasi-linear convective systems with extremely intense weather in North China[J]. Acta Meteorologica Sinica,78(6):877–898 (in Chinese).

    王宏,马凤莲,王万筠. 2009. 河北承德一次飑线过程的多普勒雷达资料分析[J]. 干旱气象,27(1):29–33. doi: 10.3969/j.issn.1006-7639.2009.01.005

    Wang H,Ma F L,Wang W J. 2009. Doppler radar data analysis of a squall line process in Chengde of Hebei Province[J]. Journal of Arid Meteorology,27(1):29–33 (in Chinese).

    杨小林,危自根. 2018. 陕西石泉井不同频带水位对气压和固体潮的响应特征[J]. 大地测量与地球动力学,38(10):1096–1100.

    Yang X L,Wei Z G. 2018. Response characteristics of water level to atmospheric loading and solid Earth tide in different frequency bands:A case study of the Shiquan well,Shaanxi[J]. Journal of Geodesy and Geodynamics,38(10):1096–1100 (in Chinese).

    杨晓亮,杨敏. 2020. 2017年秋季河北一次飑线引发的雷暴大风过程分析[J]. 气象与环境学报,36(6):1–9. doi: 10.3969/j.issn.1673-503X.2020.06.001

    Yang X L,Yang M. 2020. Analysis of a thunderstorm gale triggered by squall line in Autumn of 2017 over central Hebei Province[J]. Journal of Meteorology and Environment,36(6):1–9 (in Chinese).

    尹凤玲,张怀,石耀霖. 2015. 华北地区水位下降是否会减缓气温上升:浅部地温影响的数值模拟分析[J]. 地球物理学报,58(10):3649–3659. doi: 10.6038/cjg20151018

    Yin F L,Zhang H,Shi Y L. 2015. Persistent drawdown of groundwater table in North China may reduce local climate warming rate:Numerical simulation and analysis of the impacts on shallow ground temperature[J]. Chinese Journal of Geophysics,58(10):3649–3659 (in Chinese).

    俞小鼎,郑永光. 2020. 中国当代强对流天气研究与业务进展[J]. 气象学报,78(3):391–418. doi: 10.11676/qxxb2020.035

    Yu X D,Zheng Y G. 2020. Advances in severe convective weather research and operational service in China[J]. Acta Meteorologica Sinica,78(3):391–418 (in Chinese).

    张国民,石耀霖,张永仙. 1995. 华北北部短临前兆场特征与震源过程的数值模拟[J]. 中国地震,11(4):327–340.

    Zhang G M,Shi Y L,Zhang Y X. 1995. Characteristics of short-imminent earthquake precursory field in the northern part of North China and numerical simulation of earthquake source development[J]. Earthquake Research in China,11(4):327–340 (in Chinese).

    张凌空,吴利军,杨颖. 2012. 雷暴产生的气压突变对体应变与同井水位干扰的对比研究[J]. 中国地震,28(1):69–77. doi: 10.3969/j.issn.1001-4683.2012.01.008

    Zhang L K,Wu L J,Yang Y. 2012. Comparative study of the interference of mutation pressure generated by thunderstorms with volume strain and same well water-level[J]. Earthquake Research in China,28(1):69–77 (in Chinese).

    张昭栋,郑金涵,张广城,靖继才. 1989a. 承压井水位对气压动态过程的响应[J]. 地球物理学报,32(5):539–549.

    Zhang Z D,Zheng J H,Zhang G C,Jing J C. 1989a. Response of water level of confined well to dynamic process of barometric pressure[J]. Acta Geophysica Sinica,32(5):539–549 (in Chinese).

    张昭栋,郑金涵,冯初刚. 1989b. 井水位的固体潮效应和气压效应与含水层参数间的定量关系[J]. 西北地震学报,11(3):47–52.

    Zhang Z D,Zheng J H,Feng C G. 1989b. Quantitative relationship between the Earth tide effect of well water level,the barometric pressure effect and the parameters of aquifers[J]. Northwestern Seismological Journal,11(3):47–52 (in Chinese).

    张昭栋,郑金涵,张广城. 1993. 井水位对气压响应的滞后及其机理[J]. 地壳形变与地震,13(4):51–56.

    Zhang Z D,Zheng J H,Zhang G C. 1993. Response lag of well water level to barometric pressure and its mechanism[J]. Crustal Deformation and Earthquake,13(4):51–56 (in Chinese).

    张子广,张素欣,张跃刚,李薇,尹宏伟,韩文英. 2005. 河北省地下流体数字与模拟资料对比研究[J]. 华北地震科学,23(4):6–12. doi: 10.3969/j.issn.1003-1375.2005.04.002

    Zhang Z G,Zhang S X,Zhang Y G,Li W,Yin H W,Han W Y. 2005. Comparison and research on digital and analogue subsurface fluid data[J]. North China Earthquake Sciences,23(4):6–12 (in Chinese).

    张子广,盛艳蕊,张素欣,李薇,尹宏伟. 2010. 井水位对气压扰动的响应[J]. 地震研究,33(2):170–175. doi: 10.3969/j.issn.1000-0666.2010.02.008

    Zhang Z G,Sheng Y R,Zhang S X,Li W,Yin H W. 2010. Response of water level on the well to air pressure perturbation[J]. Journal of Seismological Research,33(2):170–175 (in Chinese).

    赵虹,燕成玉,刘寅,陆一磊. 2020. 江苏一次强对流天气的中尺度诊断分析[J]. 科技通报,36(3):34–42.

    Zhao H,Yan C Y,Liu Y,Lu Y L. 2020. Mesoscale diagnostic analysis of a strong convective system in Jiangsu Province[J]. Bulletin of Science and Technology,36(3):34–42 (in Chinese).

    赵亚民,魏文秀. 1984. 飑线群发展的若干特征[J]. 气象,10(12):19–20. doi: 10.7519/j.issn.1000-0526.1984.12.005

    Zhao Y M,Wei W X. 1984. Some characteristics of the development process for the squall line swarm[J]. Meteorological Monthly,10(12):19–20 (in Chinese).

    庄薇,刘黎平,薄兆海,肖艳娇. 2010. 新疆一次强飑线过程双多普勒雷达观测的中尺度风场结构分析[J]. 气象学报,68(2):224–234. doi: 10.11676/qxxb2010.023

    Zhuang W,Liu L P,Bo Z H,Xiao Y J. 2010. Study of the mesoscale wind field structure of a strong squall line in the Xinjiang Uygur Autonomous Region based on the dual-Doppler radar observations[J]. Acta Meteorologica Sinica,68(2):224–234 (in Chinese).

    Das K,Sarkar S,Mukherjee A,Das P,Pathak A. 2021. Observing tidal and storm generated wave height impact on groundwater levels in a tropical delta (the Sundarbans)[J]. J Hydrol,603:126813. doi: 10.1016/j.jhydrol.2021.126813

    Lai G J,Ge H K,Wang W L. 2013. Transfer functions of the well-aquifer systems response to atmospheric loading and Earth tide from low to high-frequency band[J]. J Geophys Res:Solid Earth,118(5):1904–1924. doi: 10.1002/jgrb.50165

    Meng Z Y,Yan D C,Zhang Y J. 2013. General features of squall lines in East China[J]. Mon Wea Rev,141(5):1629–1647. doi: 10.1175/MWR-D-12-00208.1

    Roeloffs E. 1996. Poroelastic techniques in the study of earthquake-related hydrologic phenomena[J]. Adv Geophys,37:135–195.

    Sun X L,Xiang Y. 2020. Comparison of transfer function models for well-aquifer system response to atmospheric loading[J]. J Hydrol,590:125494. doi: 10.1016/j.jhydrol.2020.125494

    Zhang Y,Fu L Y,Ma Y C,Hu J H. 2016. Different hydraulic responses to the 2008 Wenchuan and 2011 Tohoku earthquakes in two adjacent far-field wells:The effect of shales on aquifer lithology[J]. Earth Planets Space,68(1):178. doi: 10.1186/s40623-016-0555-5

图(7)  /  表(3)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  74
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-24
  • 修回日期:  2023-02-16
  • 网络出版日期:  2023-10-08
  • 刊出日期:  2024-07-14

目录

    /

    返回文章
    返回