3D High-resolution S-wave velocity structure of the lithosphere beneath North China Craton based on Eikonal surface wave tomography
-
摘要:
利用“中国地震科学台阵探测”项目Ⅱ期和Ⅲ期的流动地震台站以及中国区域地震台网中的部分固定台站的观测资料,采用程函面波成像方法获得了华北克拉通及周边区域10—120 s周期的瑞雷面波相速度分布和高分辨率的三维S波速度结构,并基于该速度模型估算了岩石圈厚度分布。结果显示,华北克拉通内部岩石圈厚度除了存在“西厚东薄”的一级分布特征外,还存在一些更小尺度的差异,包括鄂尔多斯地块内部岩石圈“南厚北薄”、鄂尔多斯地块周缘断陷带岩石圈显著的不均匀减薄以及燕山构造带与其南侧华北平原之间的显著差异等。山西断陷带北部与南部地区上地幔浅部(<100 km)存在不同程度的低速异常,它们被中部的高速异常区所分隔。在150 km以下深度从太行山南缘向北至山西断陷北缘存在一条NNE向展布的显著低速异常带,表明上地幔浅部南北部的低速异常在深部相连。结合已有的其它成像结果,我们推测这些低速异常起源于更深处(>200 km),并与由太平洋俯冲板块的滞留脱水导致的上地幔热物质上涌和小尺度地幔对流等密切相关。燕山构造带与华北平原的岩石圈结构存在明显差异,前者遭受的岩石圈破坏改造程度明显弱于后者,张家口—渤海地震带位于这两种不同壳幔结构的过渡带,地震活动较强,我们认为深部结构和热作用的显著差异,以及青藏高原远场挤压效应的共同作用是导致该区地震活动较强的主要原因。
Abstract:The North China Craton has undergone intensely tectonic reactivation since the Mesozoic, which resulted in lithosphere modification, thinning and destruction, and accompanied by large amount of magmatic activity. The neotectonic movement is strong and destructive earthquakes occur frequently in this region. It is of great significance to obtain medium deformation and structure information in the crust and upper mantle for understanding these process. High-resolution lithosphere structure will provide important basis for understanding a series of scientific issues such as the tectonic deformation of crust-mantle media, the interaction between structural blocks, the deep environment of strong earthquakes, the spatial distribution range and dynamic mechanism of lithosphere thinning and destruction.
Many researches about seismic tomography have been carried out in the North China Craton. But, the results of high-resolution of the lithosphere across the whole North China Craton are still few, due to the limitation of observation conditions or range, which limits further analysis on a series of scientific issues. As the rapid development of seismic array observation technology, some high-resolution seismic tomography techniques appear which suitable for dense arrays. The Eikonal surface wave tomography takes into account the bending phenomenon of seismic wave propagation path in complex media, and is suitable for both ambient noise and seismic surface wave. Its lateral resolution is equivalent to the average spacing of stations for arrays with relatively uniform distribution of stations. Considering that the ambient noise tomography is limited to medium and short periods (generally below 40 s), which mainly restricts the depth range from the crust to the top of the upper mantle so that it is difficult to carry out research and discussion on deeper depths. In this study, we choose the surface wave observation data to extract Rayleigh wave phase velocity of medium and long period by Eikonal surface wave tomograph, which can provide constraints on the entire lithosphere depth range.
We collected the surface wave data of teleseismic events from
1513 seismic stations in this study, including 670 portable stations from ChinArray PhaseⅡ, 361 portable stations from ChinArray Phase Ⅲ−1 , 324 portable stations from ChinArray Phase Ⅲ−2 , and 158 permanent stations from China National Seismic Network (CSN). This is the most intensive seismic station bservations in the study region, with an average station spacing of about 35 km. Their corresponding observation periods are September 2013 to June 2016, November 2016 to January 2019, November 2017 to November 2020, and April 2016 to January 2019. The 3D high-resolution S-wave velocity model was obtained by two-step method in the depth range of 200 km below the study region. Firstly, We obtained the phase velocity of Rayleigh surface wave at 10−120 s by Eikonal surface wave tomography and extracted the pure path dispersion curves of each grid node on the surface. Secondly, we obtained these one-dimensional S-wave velocity models at these corresponding nodes by linear inversion method, then all the one-dimensional S-wave velocity models are combined to obtain the 3D S-wave velocity model. The lithosphere thickness is estimated by the empirical relationship between upper mantle S-wave velocity and pressure and temperature based on this model.The results showed that there are some smaller scale variations of the lithosphere thickness in the North China Craton in addition to the first-order distribution characteristics of ‘thick in the west and thin in the east’. Which includes: ① within the Ordos block, the lithosphere is thinner in the north than that in the south; ② within the peripheral rift zone around Ordos block, it is characterized by significantly heterogeneous thinned lithosphere; ③ there is significant difference between Yanshan Orogenic Belt and North China plain on its south side.In Shanxi rift zone, both the northern and southern regions exhibit varying degrees of low velocity anomalies in the upper mantle (<100 km), which are separated by a high velocity anomaly zone in the central area.At depth of more than 150 km, a remarkable low-velocity anomaly belt oriented NNE is observed from the southern edge of Taihang Mountain to the northern edge of Shanxi rift zone, indicating that the shallow upper mantle low-velocity anomalies are connected in the deep.Combined with some other research findings, we speculated that these low-velocity anomalies may stem from a greater depth (>200 km), potentially linked with the stagnant dehydration of the subducted Pacific plate and consequent upwelling of thermal material in the upper mantle, as well as small-scale mantle convection. The lithospheric structures of the Yanshan Orogenic belt is significantly different from North China Plain, with former experienced much less destruction and reconstruction. Zhangjiakou−Bohai seismic zone is located at the transitional region between these two distinct crust-mantle structures, and characterized by intense seismic activity. We concluded that the combination of significant differences in deep structure and thermal action, as well as the far-field extrusion effect of the Qinghai−XizangPlateau, mainly contributes to the intense seismic activity in this zone. There are some significant high velocity anomalies near the depth of 200 km in Yanshan Orogenic Belt, northern part of the North China Plain and around Bohai Bay. It is speculated that these anomalies may be related to the local delamination of the lithosphere, which represent the remnants of the Archean cratonic lithosphere sinking into the asthenosphere.
-
引言
在印度与欧亚陆-陆汇聚的远程作用下,晚中新世以来青藏高原东北缘迅速抬升。相对于高原内部,东北缘仍处于地表抬升和侧向生长阶段,地形变化、地质构造和地下结构均异常复杂,区内分布的大型深断裂带,多数是重要的大地构造区的边界断裂,同时也是控制现今强震活动的活断层(周民都等,2000;袁道阳,2003;沈旭章等,2013)。
2016年1月21日青海省门源MS6.4地震发生于青藏高原东北缘内部的二级块体祁连地块上,微观震中位于(37.7°N,101.6°E),宏观震中位于门源县泉口镇,震源机制解显示节面Ⅰ走向为143°、倾角为35°、滑动角为91°,节面Ⅱ走向为335°、倾角为56°、滑动角为97°,主压应力轴方位角为60°、倾角为0.6° (黄浩等,2017;梁姗姗等,2017)。该地震的发震构造为冷龙岭断裂北侧的弧形次生断裂,该次生断裂与冷龙岭断裂一起构成正花状构造,NNW走向的逆断层在ENE向近水平压应力作用下发生错断(胡朝忠等,2016;郭鹏等,2017;姜文亮等,2017;刘云华等,2019)。
门源地震震中虽位于青海省2016年度危险区预测范围内,但在震前未作出及时的短临预报,测震学异常主要以中长期异常为主,前兆异常仅在乐都台站提取到一项气氡异常(屠泓为等,2016;王培玲等,2016;马玉虎等,2017),震后对门源地震震前的异常特征的分析探讨(李霞等,2016;马震,苏维刚,2016;杨晓霞等,2016;刘磊等,2017;苏维刚等,2018)多是基于单一学科或多学科异常的简单统计归纳,并未对震前的异常时空演化过程进行综合的分析研究。为此,本文拟通过对门源地震之前震中周边前兆台站的观测资料进行回顾性分析,梳理震前出现的各类异常,总结其变化特征,提取门源地震震前前兆异常的时空演化进程,以期为后续的前兆异常综合分析提供思路和参考。
引言
在印度与欧亚陆-陆汇聚的远程作用下,晚中新世以来青藏高原东北缘迅速抬升。相对于高原内部,东北缘仍处于地表抬升和侧向生长阶段,地形变化、地质构造和地下结构均异常复杂,区内分布的大型深断裂带,多数是重要的大地构造区的边界断裂,同时也是控制现今强震活动的活断层(周民都等,2000;袁道阳,2003;沈旭章等,2013)。
2016年1月21日青海省门源MS6.4地震发生于青藏高原东北缘内部的二级块体祁连地块上,微观震中位于(37.7°N,101.6°E),宏观震中位于门源县泉口镇,震源机制解显示节面Ⅰ走向为143°、倾角为35°、滑动角为91°,节面Ⅱ走向为335°、倾角为56°、滑动角为97°,主压应力轴方位角为60°、倾角为0.6° (黄浩等,2017;梁姗姗等,2017)。该地震的发震构造为冷龙岭断裂北侧的弧形次生断裂,该次生断裂与冷龙岭断裂一起构成正花状构造,NNW走向的逆断层在ENE向近水平压应力作用下发生错断(胡朝忠等,2016;郭鹏等,2017;姜文亮等,2017;刘云华等,2019)。
门源地震震中虽位于青海省2016年度危险区预测范围内,但在震前未作出及时的短临预报,测震学异常主要以中长期异常为主,前兆异常仅在乐都台站提取到一项气氡异常(屠泓为等,2016;王培玲等,2016;马玉虎等,2017),震后对门源地震震前的异常特征的分析探讨(李霞等,2016;马震,苏维刚,2016;杨晓霞等,2016;刘磊等,2017;苏维刚等,2018)多是基于单一学科或多学科异常的简单统计归纳,并未对震前的异常时空演化过程进行综合的分析研究。为此,本文拟通过对门源地震之前震中周边前兆台站的观测资料进行回顾性分析,梳理震前出现的各类异常,总结其变化特征,提取门源地震震前前兆异常的时空演化进程,以期为后续的前兆异常综合分析提供思路和参考。
1. 发震区域构造应力特征
门源地震发震区域所处的祁连山断裂带(图1)为一条宽约60 km的连续变形带,其地壳应变率显著高于周边区域,显示出该断裂带强烈的活动特征。震前的连续GPS观测结果显示自2010年以来该区域一直处于应变的挤压缩减状态,震中附近区域的EW向线应变和面应变率从2014年开始出现弱化现象,均表明该区域在震前积累了一定程度的应变能(马海萍等,2016;陈为涛等,2017;苏小宁,孟国杰,2017)。
门源MS6.4地震震中附近区域的地壳受挤压变形,重力场的异常变化特征亦较为显著。2011年5月—2012年5月青藏高原东北缘测区较大范围内出现了区域性重力异常,至2014年5月—2015年5月临近发震前局部重力异常变化开始呈 “四象限” 分布。由于地震发生在重力反向变化过程中的四象限中心,重力加速变化可能是门源地震发震前地壳内部物质运移等活动在地表重力场上的反映(祝意青等,2016;王同庆等,2018;Liu et al,2018)。
1. 发震区域构造应力特征
门源地震发震区域所处的祁连山断裂带(图1)为一条宽约60 km的连续变形带,其地壳应变率显著高于周边区域,显示出该断裂带强烈的活动特征。震前的连续GPS观测结果显示自2010年以来该区域一直处于应变的挤压缩减状态,震中附近区域的EW向线应变和面应变率从2014年开始出现弱化现象,均表明该区域在震前积累了一定程度的应变能(马海萍等,2016;陈为涛等,2017;苏小宁,孟国杰,2017)。
门源MS6.4地震震中附近区域的地壳受挤压变形,重力场的异常变化特征亦较为显著。2011年5月—2012年5月青藏高原东北缘测区较大范围内出现了区域性重力异常,至2014年5月—2015年5月临近发震前局部重力异常变化开始呈 “四象限” 分布。由于地震发生在重力反向变化过程中的四象限中心,重力加速变化可能是门源地震发震前地壳内部物质运移等活动在地表重力场上的反映(祝意青等,2016;王同庆等,2018;Liu et al,2018)。
2. 地球物理场异常时空分布特征
门源地震震中附近的前兆观测台站多集中于震中东南部,北部较为稀疏(图2),其中距震中100 km范围内有5个前兆台站,距震中100—200 km范围内有17个台站,距震中200—300 km范围内有10个台站。通过对资料的回顾性分析,梳理出定点前兆异常共计15项(图2),其中形变类异常有8项,流体类异常5项,电磁类异常2项,详见表1,结合 《中国震例》 的异常时间划分将地震异常分为中长期异常、中短期异常和短临异常。门源地震前提取的 15 项前兆异常具体列于表2,异常台站由于受观测台站分布影响,主要集中于震中东南部,其它区域零散分布。
表 1 门源MS6.4地震前兆异常分布Table 1. Distribution of precursory anomalies of the Menyuan MS6.4 earthquake震中距/km 异常项 异常台站所占比例 100 2 20% 100—200 3 29% 200—300 3 20% >300 7 20% 表 2 门源MS6.4地震前兆异常统计Table 2. Statistics on precursory anomalies of the Menyuan MS6.4 earthquake序号 异常项目 台站 异常出现日期
年-月-日异常结束日期
年-月-日异常判据 震中距
/km震例 1 水平摆倾斜 门源 2015-08-18 2015-08-27 转折变化 31 乌兰MS5.1,祁连MS5.2,门源MS6.4 2 垂直摆倾斜 门源 2015-08-18 2015-08-27 转折变化 31 乌兰MS5.1,祁连MS5.2,门源MS6.4 3 静水位 平安 2015-09-01 2016-01-01 年变异常变化 140 门源MS6.4 4 钻孔倾斜 湟源 2015-11-01 2016-02-01 持续北倾 130 门源MS6.4 5 气氡 乐都 2015-12-01 2016-03-01 年变异常变化 140 门源MS6.4 6 钻孔倾斜 寺滩 2016-01-17 2016-01-24 加速北倾 203 门源MS6.4 7 洞体应变 白银 2015-01-01 2015-10-01 年变异常变化 250 玉树MS7.1,门源MS6.4 8 短基线伸缩仪NS分量 兰州十
里店2014-05-01 2016-01-01 趋势转折 258 门源MS6.4 9 水温 海原 2015-08-01 2015-11-01 转折上升 350 汶川MS8.0,阿拉善MS5.8,门源MS6.4 10 气氡 嘉峪关 2015-09-01 未结束 高值变化 392 玉门MS5.9,民乐MS6.0,海西MS6.3,
海西MS6.4,门源MS6.411 钻孔应变 格尔木 2015-01-01 2016-02-01 年变异常变化 640 海西MS6.4,玉树MS7.1,门源MS6.4 12 水平摆倾 格尔木 2015-01-01 2016-02-01 趋势性转折 640 海西MS6.3,海西MS6.4,
玉树MS7.1,门源MS6.413 深井地电 天水 2016-01-05 2016-01-21 加速上升 522 芦山MS7.0,岷嶂MS6.6,门源MS6.4 14 地磁 2015-12-23 2015-12-23 超阈值 岷嶂MS6.6,门源MS6.4,
阿拉善MS5.0,九寨沟MS7.015 水温 玉树 2015-10-07 2015-11-17 “V”形变化 756 尼泊尔MS8.0,玉树MS7.1,
门源MS6.4,杂多MS6.22.1 中长期异常
白银台洞体应变EW分量2014年9月开始出现趋势转平异常变化,打破了2010—2013年逐年上升(拉张)的年变形态;兰州十里店台洞体应变短基线NS向自2014年5月出现趋势性转折上升;格尔木台钻孔应变1-3差应变自2015年开始出现年变异常变化,打破了2011年以来的年变变化;格尔木台水平摆倾斜东西分量自2015年以来出现趋势转折变化,从趋势西倾转为趋势东倾。中长期异常均为形变类,且异常形态均为趋势性转折或年变异常变化。
2.2 中短期异常
海原台干盐池水温在2015年8月开始转折上升,至11月恢复下降趋势,在下降过程中发生门源MS6.4地震;门源台两个倾斜分量均于2015年8月18日出现转折变化,8月27日回返;平安台2015年9月23日静水位从原有的下降趋势转变为上升变化,呈年变异常变化;嘉峪关台气氡自2015年9月以来氡值出现高值异常;玉树台水温自2015年10月7日出现下降趋势,10月31日恢复上升,形成 “V” 形变化;湟源台钻孔倾斜北南分量自2015年11月起加速北倾,门源地震后回返并恢复至水平变化。这样看来,中短期异常主要以流体类为主,且异常形态主要呈趋势上升或 “V” 形变化,区域地壳受挤压变形,底部热物质上涌至浅层地表,孔隙压增大,水位和水温均表现为上升变化,部分观测井所处的断层灵敏位置,异常呈下降—上升的复杂变化(张永仙,刘桂萍,2000;祝意青等,2016)。
2.2 中短期异常
海原台干盐池水温在2015年8月开始转折上升,至11月恢复下降趋势,在下降过程中发生门源MS6.4地震;门源台两个倾斜分量均于2015年8月18日出现转折变化,8月27日回返;平安台2015年9月23日静水位从原有的下降趋势转变为上升变化,呈年变异常变化;嘉峪关台气氡自2015年9月以来氡值出现高值异常;玉树台水温自2015年10月7日出现下降趋势,10月31日恢复上升,形成 “V” 形变化;湟源台钻孔倾斜北南分量自2015年11月起加速北倾,门源地震后回返并恢复至水平变化。这样看来,中短期异常主要以流体类为主,且异常形态主要呈趋势上升或 “V” 形变化,区域地壳受挤压变形,底部热物质上涌至浅层地表,孔隙压增大,水位和水温均表现为上升变化,部分观测井所处的断层灵敏位置,异常呈下降—上升的复杂变化(张永仙,刘桂萍,2000;祝意青等,2016)。
2.3 短临异常
乐都台气氡在2015年12月出现年变异常变化,大幅度突升;2015年12月23日嘉峪关、格尔木、都兰和贵德等台站的加卸载响应比和日变幅逐日比超阈值;临震前,距震中522 km的天水台深井地电观测EW和NW道日均值于2016年1月5日开始呈加速上升形态,并出现多次起伏;距震中203 km的寺滩台钻孔倾斜NS分量在2016年1月17日出现加速北倾变化。临震异常主要以电磁类为主。
2.3 短临异常
乐都台气氡在2015年12月出现年变异常变化,大幅度突升;2015年12月23日嘉峪关、格尔木、都兰和贵德等台站的加卸载响应比和日变幅逐日比超阈值;临震前,距震中522 km的天水台深井地电观测EW和NW道日均值于2016年1月5日开始呈加速上升形态,并出现多次起伏;距震中203 km的寺滩台钻孔倾斜NS分量在2016年1月17日出现加速北倾变化。临震异常主要以电磁类为主。
3. 定点前兆异常的时空演化特征分析
3. 定点前兆异常的时空演化特征分析
3.1 前兆异常的时空演化特征
综合门源地震前提取的15项前兆异常,从震前异常的时间演化来看:该地震震前2年白银台洞体应变和兰州十里店台短基线伸缩仪分别出现年变异常变化和趋势性转折异常;震前1年格尔木台钻孔应变差应变和水平摆倾斜EW分量分别出现年变异常变化和趋势性转折异常;震前5—3个月门源台倾斜等形变类短期异常和乐都台气氡等流体类短期异常集中出现;震前23—15天和震前4天分别出现天水台深井地电阻率等电磁类异常和寺滩台钻孔倾斜等形变类异常。这些异常的出现时间如图3所示,可见随时间推移长—中—短—临异常依次出现。
在考虑震前异常时间演化进程的基础上,通过研究异常的空间分布特征可知:首先在距震中250—650 km的范围出现年变异常变化和趋势转折异常等中长期异常;之后随时间推移中短期异常出现,大部分异常主要集中在距震中150—50 km的范围内,少量异常如玉树水温异常出现在距震中756 km处;发震前临震异常出现在距震中200—500 km的区域内。
冯德益基于诸多震例资料的分析研究,明确地提出了地震前兆过程的3个发展阶段,即α,β和γ阶段(Feng,1983)。本文将门源地震前的前兆异常出现时间与震中距关系绘制成图,如图4所示,可见异常开始时间随震中距的阶段变化同样可以划分为α,β和γ等三个阶段:α阶段为远源场前兆异常从震中向外围扩散的过程,异常主要出现在震前390—630天内,震中距主要介于260—640 km之间;β阶段为前兆异常大范围分布,主要出现在震前100—200天,且在震中距30—760 km内均有分布;γ阶段为前兆异常从震中向外围扩散的过程,且为近源场异常向外扩散。
考虑到不同震级和不同区域的地震活动前兆异常演化的差异性,据 《中国震例》 选取西北地区前兆异常相对丰富的2014年4月14日玉树MS7.1地震和2013年7月22日岷嶂MS6.6地震进行对比分析。玉树MS7.1地震震中500 km范围内共有7个前兆观测台站,震前出现8条异常,属5个异常项目;岷漳MS6.6地震震中300 km范围内共有17个前兆观测台站,震前出现12条异常,属5个异常项目。将两次地震前的异常出现时间与震中距关系绘制成图,如图5所示,可见异常开始时间随震中距的阶段变化基本符合α,β和γ三阶段的发展。玉树地震前(图5a),α阶段远源场前兆异常从震中向外围扩散;β阶段前兆异常大范围分布,异常较为分散;γ阶段前兆异常为远源场异常,向震中逼近。岷嶂地震前(图5b),α阶段前兆异常从震中向外围扩散,且为近源场异常;β阶段前兆异常较为分散且异常数量较少;γ阶段前兆异常为近源场异常,向外扩散。
综合三次震例可以看出,前兆异常在时空演化上具有阶段性和迁移性,均具有α,β和γ三阶段的变化,不同之处表现在:玉树MS7.1地震在γ阶段为远源场异常向震中逼近,门源MS6.4和岷嶂MS6.6地震在γ阶段为近源场异常向外扩散。前人针对唐山MS7.8、汶川MS8.0、九寨沟MS7.0等一系列显著地震的研究表明前兆异常均具有明显的α,β和γ三阶段特征(梅世蓉等,1993;宋治平,薛艳,2009;张小涛等,2018a,b),且γ阶段表现为近源区向外扩散的过程。由此说明,在地震孕育过程中前兆异常演化的阶段性具有普遍性,但因孕震区的构造活动过程有所不同,不同震例前兆异常的阶段性演化略有不同。
3.1 前兆异常的时空演化特征
综合门源地震前提取的15项前兆异常,从震前异常的时间演化来看:该地震震前2年白银台洞体应变和兰州十里店台短基线伸缩仪分别出现年变异常变化和趋势性转折异常;震前1年格尔木台钻孔应变差应变和水平摆倾斜EW分量分别出现年变异常变化和趋势性转折异常;震前5—3个月门源台倾斜等形变类短期异常和乐都台气氡等流体类短期异常集中出现;震前23—15天和震前4天分别出现天水台深井地电阻率等电磁类异常和寺滩台钻孔倾斜等形变类异常。这些异常的出现时间如图3所示,可见随时间推移长—中—短—临异常依次出现。
在考虑震前异常时间演化进程的基础上,通过研究异常的空间分布特征可知:首先在距震中250—650 km的范围出现年变异常变化和趋势转折异常等中长期异常;之后随时间推移中短期异常出现,大部分异常主要集中在距震中150—50 km的范围内,少量异常如玉树水温异常出现在距震中756 km处;发震前临震异常出现在距震中200—500 km的区域内。
冯德益基于诸多震例资料的分析研究,明确地提出了地震前兆过程的3个发展阶段,即α,β和γ阶段(Feng,1983)。本文将门源地震前的前兆异常出现时间与震中距关系绘制成图,如图4所示,可见异常开始时间随震中距的阶段变化同样可以划分为α,β和γ等三个阶段:α阶段为远源场前兆异常从震中向外围扩散的过程,异常主要出现在震前390—630天内,震中距主要介于260—640 km之间;β阶段为前兆异常大范围分布,主要出现在震前100—200天,且在震中距30—760 km内均有分布;γ阶段为前兆异常从震中向外围扩散的过程,且为近源场异常向外扩散。
考虑到不同震级和不同区域的地震活动前兆异常演化的差异性,据 《中国震例》 选取西北地区前兆异常相对丰富的2014年4月14日玉树MS7.1地震和2013年7月22日岷嶂MS6.6地震进行对比分析。玉树MS7.1地震震中500 km范围内共有7个前兆观测台站,震前出现8条异常,属5个异常项目;岷漳MS6.6地震震中300 km范围内共有17个前兆观测台站,震前出现12条异常,属5个异常项目。将两次地震前的异常出现时间与震中距关系绘制成图,如图5所示,可见异常开始时间随震中距的阶段变化基本符合α,β和γ三阶段的发展。玉树地震前(图5a),α阶段远源场前兆异常从震中向外围扩散;β阶段前兆异常大范围分布,异常较为分散;γ阶段前兆异常为远源场异常,向震中逼近。岷嶂地震前(图5b),α阶段前兆异常从震中向外围扩散,且为近源场异常;β阶段前兆异常较为分散且异常数量较少;γ阶段前兆异常为近源场异常,向外扩散。
综合三次震例可以看出,前兆异常在时空演化上具有阶段性和迁移性,均具有α,β和γ三阶段的变化,不同之处表现在:玉树MS7.1地震在γ阶段为远源场异常向震中逼近,门源MS6.4和岷嶂MS6.6地震在γ阶段为近源场异常向外扩散。前人针对唐山MS7.8、汶川MS8.0、九寨沟MS7.0等一系列显著地震的研究表明前兆异常均具有明显的α,β和γ三阶段特征(梅世蓉等,1993;宋治平,薛艳,2009;张小涛等,2018a,b),且γ阶段表现为近源区向外扩散的过程。由此说明,在地震孕育过程中前兆异常演化的阶段性具有普遍性,但因孕震区的构造活动过程有所不同,不同震例前兆异常的阶段性演化略有不同。
3.2 前兆异常的机理探讨
前兆场异常随时间和空间的不断演化受孕震体的物理化学性质和地壳应力状态的变化所控制(李丽,张国民,1999)。在强震孕育过程中,断层活动分布范围广,随着构造应力的增加和传递,外围断层大范围的活动不断向未来震中区转移;至孕震晚期,断层活动分布范围缩小,仅限于震源区附近及发震断层带上(何世海,1995;陆明勇等,2003)。
冯德益的三阶段演化理论(Feng,1983)可以与地震孕育的三个阶段相联系:α阶段微破裂发生、发展,当微破裂串通到足够程度后产生非震滑动或蠕动;β阶段除断层预滑外可能还存在气压、温度等大范围的变化。
门源地震前兆异常的演化阶段与冯德益的三阶段演化(Feng,1983)略有不同,门源地震前异常演化的γ阶段为近源场异常向外扩散,而冯德益研究提出地震前兆异常的γ阶段为从外围向震源区收缩,宋治平等(2000)基于包体流变模型计算的结果显示球形硬包体的地面体应变随时间的变化表现出α,β和γ等三个阶段,其中:α阶段前兆在近源区和远源区均向外扩展;β阶段前兆在近源区和远源区均处于极值状态;γ阶段前兆在远源区向近源区收缩,而在近源区向外扩展。基于孕震模型计算的体应变三阶段特征与地震前兆异常演化阶段具有较好的一致性,说明在地震孕育过程中区域应变场存在三阶段的演化过程。
3.2 前兆异常的机理探讨
前兆场异常随时间和空间的不断演化受孕震体的物理化学性质和地壳应力状态的变化所控制(李丽,张国民,1999)。在强震孕育过程中,断层活动分布范围广,随着构造应力的增加和传递,外围断层大范围的活动不断向未来震中区转移;至孕震晚期,断层活动分布范围缩小,仅限于震源区附近及发震断层带上(何世海,1995;陆明勇等,2003)。
冯德益的三阶段演化理论(Feng,1983)可以与地震孕育的三个阶段相联系:α阶段微破裂发生、发展,当微破裂串通到足够程度后产生非震滑动或蠕动;β阶段除断层预滑外可能还存在气压、温度等大范围的变化。
门源地震前兆异常的演化阶段与冯德益的三阶段演化(Feng,1983)略有不同,门源地震前异常演化的γ阶段为近源场异常向外扩散,而冯德益研究提出地震前兆异常的γ阶段为从外围向震源区收缩,宋治平等(2000)基于包体流变模型计算的结果显示球形硬包体的地面体应变随时间的变化表现出α,β和γ等三个阶段,其中:α阶段前兆在近源区和远源区均向外扩展;β阶段前兆在近源区和远源区均处于极值状态;γ阶段前兆在远源区向近源区收缩,而在近源区向外扩展。基于孕震模型计算的体应变三阶段特征与地震前兆异常演化阶段具有较好的一致性,说明在地震孕育过程中区域应变场存在三阶段的演化过程。
4. 讨论与结论
通过对门源地震前异常的梳理和分析,进而探讨其前兆异常的演化特征,得到以下结果:
1) 前兆异常主要集中在距震中300 km的范围内,且以中短期异常为主;
2) 前兆异常的演化呈 “长—中—短—临” 时间进程特征,且中长期异常主要以形变类为主,中短期异常主要以流体类为主,短临异常主要以电磁类为主;
3) 震前异常演化在空间上具有阶段性和迁移性,分α,β和γ阶段。α阶段前兆异常从震中向外围扩散;β阶段异常从震中到外围大范围分布;γ阶段主要以近源场异常向外扩散为主。
门源MS6.4地震未作出及时的短临预报,但通过异常梳理可知,短临异常有4项,中短期异常数量更多,如何通过足够多的中短期异常把握异常的时空演化进程呢?对门源MS6.4、岷嶂MS6.6和玉树MS7.1的震例研究结果显示:震前异常演化在时空上均具有α,β和γ三阶段演化特征,且M7地震在γ阶段表现为远源场异常向震中逼近,M6地震在γ阶段表现为近源场异常向外扩散,在未来震情跟踪过程中,应把握这种异常迁移规律,及时捕捉地震信号,作出有减灾实效的短临地震预报。
青海省地震局预报中心各位同事为本文提供了前兆异常分析资料,在此向他们表示衷心感谢。
4. 讨论与结论
通过对门源地震前异常的梳理和分析,进而探讨其前兆异常的演化特征,得到以下结果:
1) 前兆异常主要集中在距震中300 km的范围内,且以中短期异常为主;
2) 前兆异常的演化呈 “长—中—短—临” 时间进程特征,且中长期异常主要以形变类为主,中短期异常主要以流体类为主,短临异常主要以电磁类为主;
3) 震前异常演化在空间上具有阶段性和迁移性,分α,β和γ阶段。α阶段前兆异常从震中向外围扩散;β阶段异常从震中到外围大范围分布;γ阶段主要以近源场异常向外扩散为主。
门源MS6.4地震未作出及时的短临预报,但通过异常梳理可知,短临异常有4项,中短期异常数量更多,如何通过足够多的中短期异常把握异常的时空演化进程呢?对门源MS6.4、岷嶂MS6.6和玉树MS7.1的震例研究结果显示:震前异常演化在时空上均具有α,β和γ三阶段演化特征,且M7地震在γ阶段表现为远源场异常向震中逼近,M6地震在γ阶段表现为近源场异常向外扩散,在未来震情跟踪过程中,应把握这种异常迁移规律,及时捕捉地震信号,作出有减灾实效的短临地震预报。
青海省地震局预报中心各位同事为本文提供了前兆异常分析资料,在此向他们表示衷心感谢。
-
图 1 研究区构造背景分布图
图中地震为1970年以来记录到的5级以上地震(国家地震局震害防御司,1995;中国地震局震害防御司,1999)。左上角图中图显示了华北克拉通及其周边区域更大范围的构造背景。其中蓝色矩形代表放大区域范围;红色实线代表板块边界(Bird,2003);黑色空心箭头示意板块运动方向(Kreemer et al,2014)
Figure 1. Tectonic setting of the studied area
The represented earthquakes are MS≥5.0 recorded since 1970 (Department of Earthquake Disaster Prevention,State Seismological Bureau,1995;Department of Earthquake Disaster Prevention,China Earthquake Administration,1999). The upper left image shows the larger tectonic background of the North China Craton and its surrounding region;The blue rectangle represents the location of this study area;the solid red lines represent plate boundaries (Bird,2003); the black hollow arrows indicate the motion direction of the plates (Kreemer et al,2014)
图 5 面波频散曲线反演一维S波速度结构示例(35.00°N,112.25°E)
(a) 反演前后的一维S波速度模型;(b) 反演前后频散曲线的拟合情况;(c) 反演前后的频散残差分布
Figure 5. Example of inversion of surface wave dispersion data for S-wave velocity (35.00°N,112.25°E)
(a) The 1-D S-wave velocity models pre- and post-inversion;(b) The fitting distribution of dispersion curves pre- and post-inversion;(c) The dispersion residual distribution pre- and post-inversion
图 7 瑞雷面波相速度分布图像(图中v0代表每个周期T对应的平均相速度)
Figure 7. Rayleigh wave phase velocity maps at different periods (v0 represents the average phase velocity corresponding to each period T)
(a) T=10 s;(b) T=14 s;(c) T=20 s;(d) T=25 s;(e) T=32 s;(f) T=40 s;(g) T=50 s; (h) T=60 s;(i) T=70 s;(j) T=80 s;(k) T=100 s;(l) T=120 s
-
蔡光耀,王未来,吴建平,房立华. 2021. 鄂尔多斯及邻区基于程函方程的面波层析成像[J]. 地球物理学报,64(4):1215–1226. doi: 10.6038/cjg2021O0070 Cai G Y,Wang W L,Wu J P,Fang L H. 2021. Surface wave tomography based on Eikonal tomography in Ordos and adjacent areas[J]. Chinese Journal of Geophysics,64(4):1215–1226 (in Chinese).
陈国达. 1956. 中国地台“活化区”的实例并着重讨论“华夏古陆”问题[J]. 地质学报,36(3):239–271. Chen G D. 1956. Examples of “activizing region” in the Chinese platform with special reference to the “Cathaysla” problem[J]. Acta Geologica Sinica,36(3):239–271 (in Chinese).
邓晋福,莫宣学,赵海玲,罗照华,杜杨松. 1994. 中国东部岩石圈根/去根作用与大陆“活化”:东亚型大陆动力学模式研究计划[J]. 现代地质,8(3):349–356. Deng J F,Mo X X,Zhao H L,Luo Z H,Du Y S. 1994. Lithosphere root/de-rooting and activation of the east China continent[J]. Geoscience,8(3):349–356 (in Chinese).
邓起东. 2007. 中国活动构造图(1∶400万)[M]. 北京:地震出版社:1−2. Deng Q D. 2007. Map of Active Tectonics in China (1∶4 million)[M]. Beijing:Seismological Press:1−2 (in Chinese).
范蔚茗,Menzies M A. 1992. 中国东部古老岩石圈下部的破坏和软流圈地幔的增生[J]. 大地构造与成矿学, 16 :171−180. Fan W M,Menzies M A. 1992. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China[J]. Geotecton Metal, 16 :171−180 (in Chinese).
房立华,吴建平,吕作勇. 2009. 华北地区基于噪声的瑞利面波群速度层析成像[J]. 地球物理学报,52(3):663–671. Fang L H,Wu J P,Lü Z Y. 2009. Rayleigh wave group velocity tomography from ambient seismic noise in North China[J]. Chinese Journal of Geophysics,52(3):663–671 (in Chinese). doi: 10.1002/cjg2.1388
葛粲,郑勇,熊熊. 2011. 华北地区地壳厚度与泊松比研究[J]. 地球物理学报,54(10):2538–2548. doi: 10.3969/j.issn.0001-5733.2011.10.011 Ge C,Zheng Y,Xiong X. 2011. Study of crustal thickness and Poisson ratio of the North China Craton[J]. Chinese Journal of Geophysics,54(10):2538–2548 (in Chinese).
宫猛,徐锡伟,张新东,欧阳龙斌,江国焰,董博. 2017. 华北东部基于背景噪声的壳幔三维S波速度结构[J]. 地震地质,39(1):130–146. doi: 10.3969/j.issn.0253-4967.2017.01.010 Gong M,Xu X W,Zhang X D,Ouyang L B,Jiang G Y,Dong B. 2017. Three-dimensional S-wave velocity distribution based on ambient noise analysis in eastern north[J]. Seismology and Geology,39(1):130–146 (in Chinese).
国家地震局震害防御司. 1995. 中国历史强震目录(公元前23世纪—1911年)[M]. 北京:地震出版社:1−514. Department of Earthquake Disaster Prevention,China Earthquake Administration. 1995. Catalogue of Historical Strong Earthquakes in China (BC 23rd century-AD1911)[M]. Beijing:Seismological Press:1−514 (in Chinese).
郭震,陈永顺,殷伟伟. 2015. 背景噪声面波与布格重力异常联合反演:山西断陷带三维地壳结构[J]. 地球物理学报,58(3):821–831. doi: 10.6038/cjg20150312 Guo Z,Chen Y S,Yin W W. 2015. Three-dimensional crustal model of Shanxi graben from 3D joint inversion of ambient noise surface wave and Bouguer gravity anomalies[J]. Chinese Journal of Geophysics,58(3):821–831 (in Chinese).
黄汲清,任纪舜,姜春发,张之孟,许志琴. 1977. 中国大地构造基本轮廓[J]. 地质学报,51(2):117–135. Huang J Q,Ren J S,Jiang C F,Zhang Z M,Xu Z Q. 1977. An outline of the tectonic characteristics of China[J]. Acta Geologica Sinica,51(2):117–135 (in Chinese).
黄忠贤. 2011. 华北地区地壳上地幔速度各向异性研究[J]. 地球物理学报,54(3):681–691. doi: 10.3969/j.issn.0001-5733.2011.03.007 Huang Z X. 2011. Velocity anisotropy in the crust and upper mantle of North China[J]. Chinese Journal of Geophysics,54(3):681–691 (in Chinese).
黄忠贤,胥颐,郝天珧,彭艳菊,郑月军. 2009. 中国东部海域岩石圈结构面波层析成像[J]. 地球物理学报,52(3):653–662. Huang Z X,Xu Y,Hao T Y,Peng Y J,Zheng Y J. 2009. Surface wave tomography of lithospheric structure in the seas of east China[J]. Chinese Journal of Geophysics,52(3):653–662 (in Chinese).
刘靖,吴建平,王未来,蔡光耀,王薇. 2021. 鄂尔多斯及周边区域噪声层析成像研究[J]. 地震学报,43(2):152–167. doi: 10.11939/jass.20200099 Liu J,Wu J P,Wang W L,Cai G Y,Wang W. 2021. Ambient noise tomography in the Ordos block and its surrounding areas[J]. Acta Seismologica Sinica,43(2):152–167 (in Chinese).
吕作勇,吴建平. 2010. 华北地区地壳上地幔三维P波速度结构[J]. 地震学报,32(1):1–11. doi: 10.3969/j.issn.0253-3782.2010.01.001 Lü Z Y,W J P. 2010. 3-D P wave velocity structure of crust and upper mantle beneath North China[J]. Acta Seismologica Sinica,32(1):1–11 (in Chinese).
马杏垣,吴正文,谭应佳,郝春荣. 1979. 华北地台基底构造[J]. 地质学报,53(4):293–304. Ma X Y,Wu Z W,Tan Y J,Hao C R. 1979. Tectonics of the North China platform basement[J]. Acta Geologica Sinica,53(4):293–304 (in Chinese).
潘佳铁,吴庆举,李永华,张风雪,张广成. 2011. 华北地区瑞雷面波相速度层析成像[J]. 地球物理学报,54(1):67–76. doi: 10.3969/j.issn.0001-5733.2011.01.008 Pan J T,Wu Q J,Li Y H,Zhang F X,Zhang G C. 2011. Rayleigh wave tomography of the phase velocity in North China[J]. Chinese Journal of Geophysics,54(1):67–76 (in Chinese).
任纪舜,姜春发,张正坤,秦德余. 1980. 中国大地构造及其演化[M]. 北京:科学出版社:1−124. Ren J S,Jiang C F,Zhang Z K,Qin D Y. 1980. The Geotectonic Evolution of China[M]. Beijing:China Science Publishing:1−124 (in Chinese).
汤艳杰,英基丰,赵月鹏,许欣然. 2021. 华北克拉通岩石圈地幔特征与演化过程[J]. 中国科学:地球科学,51(9):1489–1503. Tang Y J,Ying J F,Zhao Y P,Xu X R. 2021. Nature and secular evolution of the lithospheric mantle beneath the North China Craton[J]. Science China Earth Sciences,64(9):1492–1503. doi: 10.1007/s11430-020-9737-4
王恺,熊熊,周宇明,冯雅杉. 2020. 联合多种资料确定华北岩石圈三维热—流变结构:对裂陷形成的意义[J]. 中国科学:地球科学,50(7):946–961. Wang K,Xiong X,Zhou Y M,Feng Y S. 2020. Three-dimensional thermo-rheological structure of the lithosphere in the North China Craton determined by integrating multiple observations:Implications for the formation of rifts[J]. Science China Earth Sciences,63(7):969–984. doi: 10.1007/s11430-019-9566-1
危自根,储日升,陈凌. 2015. 华北克拉通地壳结构区域差异的接收函数研究[J]. 中国科学:地球科学,45(10):1504–1514. Wei Z G,Chu R S,Chen L. 2015. Regional differences in crustal structure of the North China Craton from receiver functions[J]. Science China Earth Sciences,58(12):2200–2210. doi: 10.1007/s11430-015-5162-y
吴福元,徐义刚,高山,郑建平. 2008. 华北岩石圈减薄与克拉通破坏研究的主要学术争论[J]. 岩石学报,24(6):1145–1174. Wu F Y,Xu Y G,Gao S,Zheng J P. 2008. Lithospheric thinning and destruction of the North China Craton[J]. Acta Petrologica Sinica,24(6):1145–1174 (in Chinese).
吴福元,徐义刚,朱日祥,张国伟. 2014. 克拉通岩石圈减薄与破坏[J]. 中国科学:地球科学,44(11):2358–2372. Wu F Y,Xu Y G,Zhu R X,Zhang G W. 2014. Thinning and destruction of the cratonic lithosphere:A global perspective[J]. Science China Earth Sciences,57(12):2878–2890 (in Chinese). doi: 10.1007/s11430-014-4995-0
武敏捷,林向东,徐平. 2011. 华北北部地区震源机制解及构造应力场特征分析[J]. 大地测量与地球动力学,31(5):39–43. doi: 10.3969/j.issn.1671-5942.2011.05.009 Wu M J,Lin X D,Xu P. 2011. Analysis of focal mechnism and tectonic stress field features in northern part of North China[J]. Journal of Geodesy and Geodynamics,31(5):39–43 (in Chinese).
武岩,丁志峰,王兴臣,朱露培. 2018. 华北克拉通地壳结构及动力学机制分析[J]. 地球物理学报,61(7):2705–2718. doi: 10.6038/cjg2018L0244 Wu Y,Ding Z F,Wang X C,Zhu L P. 2018. Crustal structure and geodynamics of the North China Craton derived from a receiver function analysis of seismic wave data[J]. Chinese Journal of Geophysics,61(7):2705–2718 (in Chinese).
谢富仁,崔效锋,赵建涛,陈群策,李宏. 2004. 中国大陆及邻区现代构造应力场分区[J]. 地球物理学报,47(4):654–662. doi: 10.3321/j.issn:0001-5733.2004.04.016 Xie F R,Cui X F,Zhao J T,Chen Q C,Li H. 2004. Regional division of the recent tectonic stress field in China and adjacent areas[J]. Chinese Journal of Geophysics,47(4):654–662 (in Chinese).
胥鸿睿. 2018. 鄂尔多斯块体东缘横波速度结构及各向异性研究[D]. 武汉:中国地质大学:101−118. Xu H R. 2018. Study on the Shear Velocity Structure and Anisotropy of Eastern Part of Ordos Block[D]. Wuhan:China University of Geosciences:101−118 (in Chinese).
徐小兵,赵亮,王坤,杨建锋. 2018. 华北克拉通地区有限频体波层析成像:克拉通破坏的空间非均匀性[J]. 中国科学:地球科学,48(9):1223–1247. Xu X B,Zhao L,Wang K,Yang J F. 2018. Indication from finite-frequency tomography beneath the North China Craton:The heterogeneity of craton destruction[J]. Science China Earth Sciences,61(9):1238–1260. doi: 10.1007/s11430-017-9201-y
徐锡伟,吴卫民,张先康,马胜利,马文涛,于贵华,顾梦林,江娃利. 2002. 首都圈地区地壳最新构造变动与地震[M]. 北京:科学出版社:5−18. Xu X W,Wu W M,Zhang X K,Ma S L,Ma W T,Yu G H,Gu M L,Jiang W L. 2002. The Latest Crustal Deformation and Earthquakes in Beijing Area[M]. Beijing:Science Press:5−18 (in Chinese).
许忠淮. 2001. 东亚地区现今构造应力图的编制[J]. 地震学报,23(5):492–501. doi: 10.3321/j.issn:0253-3782.2001.05.005 Xu Z H. 2001. A present-day tectonic stress map for eastern Asia region[J]. Acta Seismologica Sinica,23(5):492–501 (in Chinese).
张风雪,李永华,吴庆举,丁志峰. 2011. FMTT方法研究华北及邻区上地幔P波速度结构[J]. 地球物理学报,54(5):1233–1242. doi: 10.3969/j.issn.0001-5733.2011.05.012 Zhang F X,Li Y H,Wu Q J,Ding Z F. 2011. The P wave velocity structure of upper mantle beneath the North China and surrounding regions from FMTT[J]. Chinese Journal of Geophysics,54(5):1233–1242 (in Chinese).
张岳桥,施炜,董树文. 2019. 华北新构造:印欧碰撞远场效应与太平洋俯冲地幔上涌之间的相互作用[J]. 地质学报,93(5):971–1001. doi: 10.3969/j.issn.0001-5717.2019.05.001 Zhang Y Q,Shi W,Dong S W. 2019. Neotectonics of North China:Interplay between far-field effect of India-Eurasia collision and Pacific subduction related deep-seated mantle upwelling[J]. Acta Geologica Sinica,93(5):971–1001 (in Chinese).
郑建平,路凤香,O’Reilly S Y,Griffin W L,张明. 1999. 华北地台东部古生代与新生代岩石圈地幔特征及其演化[J]. 地质学报,73(1):47–56. doi: 10.3321/j.issn:0001-5717.1999.01.006 Zheng J P,Lu F X,O’Reilly S Y,Griffin W L,Zhang M. 1999. Comparison between Palaeozoic and Cenozoic Lithospheric mantle in the eastern part of the North China Block:With a discussion of mantle evolution[J]. Acta Geologica Sinica,73(1):47–56 (in Chinese). doi: 10.1111/j.1755-6724.1999.tb00811.x
郑建平. 2009. 不同时空背景幔源物质对比与华北深部岩石圈破坏和增生置换过程[J]. 科学通报,54(14):1990–2007. Zheng J P. 2009. Comparison of mantle-derived matierals from different spatiotemporal settings:Implications for destructive and accretional processes of the North China Craton[J]. Chinese Science Bulletin,54(19):3397–3416. doi: 10.1007/s11434-009-0308-y
郑现,赵翠萍,周连庆,郑斯华. 2012. 中国大陆中东部地区基于背景噪声的瑞利波层析成像[J]. 地球物理学报,55(6):1919–1928. doi: 10.6038/j.issn.0001-5733.2012.06.013 Zheng X,Zhao C P,Zhou L Q,Zheng S H. 2012. Rayleigh wave tomography from ambient noise in Central and Eastern Chinese mainland[J]. Chinese Journal of Geophysics,55(6):1919–1928 (in Chinese).
郑永飞,徐峥,赵子福,戴立群. 2018. 华北中生代镁铁质岩浆作用与克拉通减薄和破坏[J]. 中国科学:地球科学,48(4):379–414. Zheng Y F,Xu Z,Zhao Z F,Dai L Q. 2018. Mesozoic mafic magmatism in North China:Implications for thinning and destruction of cratonic lithosphere[J]. Science China Earth Sciences,61(4):353–385. doi: 10.1007/s11430-017-9160-3
中国地震局震害防御司. 1999. 中国近代地震目录(公元1912年—1990年MS≥4.7)[M]. 北京:中国科学技术出版社:1−637. Department of Earthquake Disaster Prevention,China Earthquake Administration. 1999. Catalogue of Contemporary Seismic Events in China (AD 1912−1990 MS≥4.7)[M]. Beijing:China Science Press:1−637 (in Chinese).
中国地震科学探测台阵数据中心. 2011. 中国地震科学探测台阵波形数据:喜马拉雅计划[DB/OL]. [2020−06−12]. http://www.chinarraydmc.cn/map/station/distribution. China Seismic Array Data Management Center. 2011. China Seismic Array waveform data of Himalaya project[DB/OL]. [2020−06−12]. http://www.chinarraydmc.cn/map/station/distribution (in Chinese).
钟世军. 2016. 青藏高原东北缘及周边地区瑞利面波层析成像研究[D]. 北京:中国地震局地球物理研究所:21−36. Zhong S J. 2016. The Study of Rayleigh Surface Wave Tomography in and Around the Northeastern Margin of the Tibetan Plateau[D]. Beijing:Institute of Geophysics,China Earthquake Administration:21−36 (in Chinese).
朱日祥,郑天愉. 2009. 华北克拉通破坏机制与古元古代板块构造体系[J]. 科学通报,54(14):1950–1961. Zhu R X,Zheng T Y. 2009. Destruction geodynamics of the North China Craton and its Paleoproterozoic plate tectonics[J]. Chinese Science Bulletin,54(19):3354–3366. doi: 10.1007/s11434-009-0451-5
朱日祥,陈凌,吴福元,刘俊来. 2011. 华北克拉通破坏的时间、范围与机制[J]. 中国科学:地球科学,41(5):583–592. Zhu R X,Chen L,Wu F Y,Liu J L. 2011. Timing,scale and mechanism of the destruction of the North China Craton[J]. Science China Earth Sciences,54(6):789–797. doi: 10.1007/s11430-011-4203-4
朱日祥,徐义刚,朱光,张宏福,夏群科,郑天愉. 2012. 华北克拉通破坏[J]. 中国科学:地球科学,42(8):1135–1159. Zhu R X,Xu Y G,Zhu G,Zhang H F,Xia Q K,Zheng T Y. 2012. Destruction of the North China Craton[J]. Science China Earth Sciences,55(10):1565–1587. doi: 10.1007/s11430-012-4516-y
朱日祥,周忠和,孟庆任. 2020. 华北克拉通破坏对地表地质与陆地生物的影响[J]. 科学通报,65:2954–2965. Zhu R X,Zhou Z H,Meng Q R. 2020. Destruction of the North China Craton and its influence on surface geology and terrestrial biotas[J]. Chinese Science Bulletin,65:2954–2965 (in Chinese).
Ai S X,Zheng Y,Riaz M S,Song M Q,Zeng S J,Xie Z J. 2019. Seismic evidence on different rifting mechanisms in southern and northern segments of the Fenhe-Weihe rift zone[J]. J Geophys Res:Solid Earth,124(1):609–630. doi: 10.1029/2018JB016476
An M J,Shi Y L. 2006. Lithospheric thickness of the Chinese continent[J]. Phys Earth Planet Inter,159(3/4):257–266.
Bao X W,Song X D,Xu M J,Wang L S,Sun X X,Mi N,Yu D Y,Li H. 2013. Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications[J]. Earth Planet Sci Lett,369-370:129–137. doi: 10.1016/j.jpgl.2013.03.015
Bird P. 2003. An updated digital model of plate boundaries[J]. Geochem Geophy Geosyst,4(3):1027.
Cai Y,Wu J P,Rietbrock A,Wang W L,Fang L H,Yi S,Liu J. 2021. S wave velocity structure of the crust and upper mantle beneath Shanxi Rift,Central North China Craton and its tectonic implications[J]. Tectonics,40(4):e2020TC006239. doi: 10.1029/2020TC006239
Carlson R W,Pearson D G,James D E. 2005. Physical,chemical,and chronological characteristics of continental mantle[J]. Rev Geophys,43(1):RG1001.
Chen L. 2010. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications[J]. Lithos,120(1/2):96–115.
Chen M,Niu F L,Liu Q Y,Tromp J,Zheng X F. 2015. Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia:1. Model construction and comparisons[J]. J Geophys Res:Solid Earth,120(3):1762–1786. doi: 10.1002/2014JB011638
Cheng C,Chen L,Yao H J,Jiang M M,Wang B Y. 2013. Distinct variations of crustal shear wave velocity structure and radial anisotropy beneath the North China Craton and tectonic implications[J]. Gondwana Res,23(1):25–38. doi: 10.1016/j.gr.2012.02.014
Cheng S H,Xiao X,Wu J P,Wang W L,Sun L,Wang X X,Wen L X. 2022. Crustal thickness and vP/vS variation beneath continental China revealed by receiver function analysis[J]. Geophys J Int,228(3):1731–1749.
Dan W,Li X H,Wang Q,Wang X C,Wyman D A,Liu Y. 2016. Phanerozoic amalgamation of the Alxa Block and North China Craton:Evidence from Paleozoic granitoids,U-Pb geochronology and Sr-Nd-Pb-Hf-O isotope geochemistry[J]. Gondwana Res,32:105–121. doi: 10.1016/j.gr.2015.02.011
Fan W M,Zhang H F,Baker J,Jarvis K E,Mason P R D,Menzies M A. 2000. On and off the North China Craton:Where is the Archaean keel?[J]. J Petrol,41(7):933–950. doi: 10.1093/petrology/41.7.933
Feng J K,Yao H J,Chen L,Li C L. 2022. Ongoing lithospheric alteration of the North China Craton revealed by Surface-wave tomography and geodetic observations[J]. Geophys Res Lett,49(14):e2022GL099403. doi: 10.1029/2022GL099403
Feng M,van der Lee S,An M J,Zhao Y. 2010. Lithospheric thickness,thinning,subduction,and interaction with the asthenosphere beneath China from the joint inversion of seismic S-wave train fits and Rayleigh-wave dispersion curves[J]. Lithos,120(1/2):116–130.
Gee L S,Jordan T H. 1992. Generalized seismological data functionals[J]. Geophys J Int,111(2):363–390. doi: 10.1111/j.1365-246X.1992.tb00584.x
Griffin W L,Zhang A D,O'Reilly S Y,Ryan C G. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton[C]//Mantle Dynamics and Plate Interactions in East Asia. Washington:American Geophysical Union:107−126.
Guo Z,Afonso J C,Qashqai M T,Yang Y J,Chen Y J. 2016. Thermochemical structure of the North China Craton from multi-observable probabilistic inversion:Extent and causes of cratonic lithosphere modification[J]. Gondwana Res,37:252–265. doi: 10.1016/j.gr.2016.07.002
He L J. 2015. Thermal regime of the North China Craton:Implications for craton destruction[J]. Earth-Sci Rev,140:14–26. doi: 10.1016/j.earscirev.2014.10.011
Heidbach O,Rajabi M,Reiter K,Ziegler M. 2016. World stress map 2016. GFZ Data Service[DB/OL]. https://doi.org/10.5880./WSM.2016.001.
Herrmann R B. 2013. Computer programs in seismology:An evolving tool for instruction and research[J]. Seismol Res Lett,84(6):1081–1088. doi: 10.1785/0220110096
Huang J L,Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions[J]. J Geophys Res:Solid Earth,111(B9):B09305.
Huang Z X,Su W,Peng Y J,Zheng Y J,Li H Y. 2003. Rayleigh wave tomography of China and adjacent regions[J]. J Geophys Res:Solid Earth,108(B2):2073.
Huang Z X,Li H Y,Zheng Y J,Peng Y J. 2009. The lithosphere of North China Craton from surface wave tomography[J]. Earth Planet Sci Lett,288(1/2):164–173.
Jiang M M,Ai Y S,Chen L,Yang Y J. 2013. Local modification of the lithosphere beneath the central and western North China Craton:3-D constraints from Rayleigh wave tomography[J]. Gondwana Res,24(3/4):849–864.
Jin G,Gaherty J B. 2015. Surface wave phase-velocity tomography based on multichannel cross-correlation[J]. Geophys J Int,201(3):1383–1398. doi: 10.1093/gji/ggv079
Kreemer C,Blewitt G,Klein E C. 2014. A geodetic plate motion and global strain rate model[J]. Geochem Geophy Geosyst,15(10):3849–3889. doi: 10.1002/2014GC005407
Lei J S. 2012. Upper-mantle tomography and dynamics beneath the North China Craton[J]. J Geophys Res:Solid Earth,117(B6):B06313.
Lei J S,Zhao D P,Xu X W,Du M F,Mi Q,Lu M W. 2020. P-wave upper-mantle tomography of the Tanlu fault zone in eastern China[J]. Phys Earth Planet Inter,299:106402. doi: 10.1016/j.pepi.2019.106402
Li C,van der Hilst R D. 2010. Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography[J]. J Geophys Res:Solid Earth,115(B7):B07308.
Li M K,Song X D,Li J T,Bao X W. 2022. Crust and upper mantle structure of East Asia from ambient noise and earthquake surface wave tomography[J]. Earthquake Science,35(2):71–92. doi: 10.1016/j.eqs.2022.05.004
Li S L,Guo Z,Chen Y J,Yang Y J,Huang Q H. 2018. Lithospheric structure of the northern Ordos from ambient noise and teleseismic surface wave tomography[J]. J Geophys Res:Solid Earth,123(8):6940–6957. doi: 10.1029/2017JB015256
Li Y H,Gao M T,Wu Q J. 2014. Crustal thickness map of the Chinese mainland from teleseismic receiver functions[J]. Tectonophysics,611:51–60. doi: 10.1016/j.tecto.2013.11.019
Lin F C,Ritzwoller M H,Snieder R. 2009. Eikonal tomography:Surface wave tomography by phase front tracking across a regional broad-band seismic array[J]. Geophys J Int,177(3):1091–1110. doi: 10.1111/j.1365-246X.2009.04105.x
Lin F C,Ritzwoller M H. 2011. Helmholtz surface wave tomography for isotropic and azimuthally anisotropic structure[J]. Geophys J Int,186(3):1104–1120. doi: 10.1111/j.1365-246X.2011.05070.x
Liu J,Wu J P,Wang W L,Cai Y,Fang L H. 2021. Seismic anisotropy and implications for lithospheric deformation beneath the Ordos block and surrounding regions[J]. Geophys J Int,226(3):1885–1896. doi: 10.1093/gji/ggab154
Liu J G,Cai R H,Pearson D G,Scott J M. 2019. Thinning and destruction of the lithospheric mantle root beneath the North China Craton:A review[J]. Earth-Sci Rev,196:102873. doi: 10.1016/j.earscirev.2019.05.017
Ma J C,Tian Y,Zhao D P,Liu C,Liu T T. 2019. Mantle dynamics of western Pacific and east Asia:New insights from P wave anisotropic tomography[J]. Geochem Geophys Geosyst,20(7):3628–3658. doi: 10.1029/2019GC008373
Menzies M A,Fan W M,Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere,Sino-Korean Craton,China[J]. Geol Soc,London,Spec Publ, 76 :71−81.
Menzies M A,Xu Y G,Zhang H F,Fan W M. 2007. Integration of geology,geophysics and geochemistry:A key to understanding the North China Craton[J]. Lithos,96(1/2):1–21.
Priestley K,McKenzie D. 2006. The thermal structure of the lithosphere from shear wave velocities[J]. Earth Planet Sci Lett,244(1/2):285–301.
Shen W S,Ritzwoller M H,Kang D,Kim Y H,Lin F C,Ning J Y,Wang W T,Zheng Y,Zhou L Q. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophys J Int,206(2):954–979. doi: 10.1093/gji/ggw175
Tang Y C,Chen Y J,Zhou S Y,Ning J Y,Ding Z F. 2013. Lithosphere structure and thickness beneath the North China Craton from joint inversion of ambient noise and surface wave tomography[J]. J Geophys Res:Solid Earth,118(5):2333–2346. doi: 10.1002/jgrb.50191
Tao K,Grand S P,Niu F L. 2018. Seismic structure of the upper mantle beneath eastern Asia from full waveform seismic tomography[J]. Geochem Geophys Geosyst,19(8):2732–2763. doi: 10.1029/2018GC007460
Tian Y,Zhao D P,Sun R M,Teng J W. 2009. Seismic imaging of the crust and upper mantle beneath the North China Craton[J]. Phys Earth Planet Inter,172(3/4):169–182.
Wang C Y,Sandvol E,Zhu L,Lou H,Yao Z X,Luo X H. 2014. Lateral variation of crustal structure in the Ordos block and surrounding regions,North China,and its tectonic implications[J]. Earth Planet Sci Lett,387:198–211. doi: 10.1016/j.jpgl.2013.11.033
Wang C Y,Sandvol E,Lou H,Wang X C,Chen Y S. 2017. Evidence for a crustal root beneath the Paleoproterozoic collision zone in the northern Ordos block,North China[J]. Precambrian Res,301:124–133. doi: 10.1016/j.precamres.2017.09.009
Wang J,Wu H H,Zhao D P. 2014. P wave radial anisotropy tomography of the upper mantle beneath the North China Craton[J]. Geochem Geophys Geosyst,15(6):2195–2210. doi: 10.1002/2014GC005279
Wang M,Shen Z K. 2020. Present-day crustal deformation of continental china derived from GPS and its tectonic implications[J]. J Geophys Res:Solid Earth,125(2):e2019JB018774. doi: 10.1029/2019JB018774
Wang W L,Wu J P,Fang L H,Lai G J,Cai Y. 2017. Sedimentary and crustal thicknesses and Poisson’s ratios for the NE Tibetan Plateau and its adjacent regions based on dense seismic arrays[J]. Earth Planet Sci Lett,462:76–85. doi: 10.1016/j.jpgl.2016.12.040
Wang Z S,Kusky T M,Capitanio F A. 2016. Lithosphere thinning induced by slab penetration into a hydrous mantle transition zone[J]. Geophys Res Lett,43(22):11567–11577.
Wei W,Xu J D,Zhao D P,Shi Y L. 2012. East Asia mantle tomography:New insight into plate subduction and intraplate volcanism[J]. J Asian Earth Sci,60:88–103. doi: 10.1016/j.jseaes.2012.08.001
Wu J P,Liu Y N,Zhong S J,Wang W L,Cai Y,Wang W,Liu J. 2022. Lithospheric structure beneath Ordos Block and surrounding areas from joint inversion of receiver function and surface wave dispersion[J]. Science China Earth Science,65(7):1399–1413. doi: 10.1007/s11430-021-9895-0
Xu X M,Li G L,Ding Z F,Huang X. 2022. S-wave velocity structure of the crust and upper mantle beneath the North China Craton determined by joint inversion of Rayleigh-wave phase velocity and Z/H ratio[J]. Seismol Res Lett,93(4):2176–2188. doi: 10.1785/0220220014
Xu Y G. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China:Evidence,timing and mechanism[J]. Phys Chem Earth Part A,26(9/10):747–757.
Xu Y G,Ma J L,Frey F A,Feigenson M D,Liu J F. 2005. Role of lithosphere–asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong,western North China Craton[J]. Chem Geol,224(4):247–271. doi: 10.1016/j.chemgeo.2005.08.004
Xu Y G. 2007. Diachronous lithospheric thinning of the North China Craton and formation of the Daxin'anling–Taihangshan gravity lineament[J]. Lithos,96(1/2):281–298.
Yao Z X,Eric S,Wang C Y,Ding Z F,Chen Y S. 2020. Asthenospheric upwelling beneath northeastern margin of Ordos Block:Constraints from Rayleigh surface-wave tomography[J]. Tectonophysics,790:228548. doi: 10.1016/j.tecto.2020.228548
Zhang J,Li J Y,Xiao W X,Wang Y N,Qi W H. 2013. Kinematics and geochronology of multistage ductile deformation along the eastern Alxa block,NW China:New constraints on the relationship between the North China plate and the Alxa block[J]. J Struct Geol,57:38–57. doi: 10.1016/j.jsg.2013.10.002
Zhang P,Yao H J,Chen L,Fang L H,Wu Y,Feng J K. 2019. Moho depth variations from receiver function imaging in the northeastern North China Craton and its tectonic implications[J]. J Geophys Res:Solid Earth,124(2):1852–1870. doi: 10.1029/2018JB016122
Zhang Y G,Zheng W J,Wang Y J,Zhang D L,Tian Y T,Wang M,Zhang Z Q,Zhang P Z. 2018. Contemporary deformation of the North China plain from global positioning system data[J]. Geophys Res Lett,45(4):1851–1859. doi: 10.1002/2017GL076599
Zhang Y Y,Chen L,Ai Y S,Jiang M M. 2019. Lithospheric structure beneath the central and western North China Craton and adjacent regions from S-receiver function imaging[J]. Geophys J Int,219(1):619–632. doi: 10.1093/gji/ggz322
Zhao G C. 2001. Palaeoproterozoic assembly of the North China Craton[J]. Geol Mag,138(1):87–91. doi: 10.1017/S0016756801005040
Zhao G C,Cawood P A,Li S Z,Wilde S A,Sun M,Zhang J,He Y H,Yin C Q. 2012. Amalgamation of the North China Craton:Key issues and discussion[J]. Precambrian Res,222-223:55–76. doi: 10.1016/j.precamres.2012.09.016
Zhao L,Allen R M,Zheng T Y,Zhu R X. 2012. High-resolution body wave tomography models of the upper mantle beneath eastern China and the adjacent areas[J]. Geochem Geophys Geosyst,13(6):Q06007.
Zheng T Y,Zhao L,Xu W W,Zhu R X. 2008. Insight into modification of North China Craton from seismological study in the Shandong Province[J]. Geophys Res Lett,35(22):L22305.
Zheng T Y,Zhao L,Zhu R X. 2009. New evidence from seismic imaging for subduction during assembly of the North China Craton[J]. Geology,37(5):395–398. doi: 10.1130/G25600A.1
Zheng T Y,Zhu R X,Zhao L,Ai Y S. 2012. Intralithospheric mantle structures recorded continental subduction[J]. J Geophys Res:Solid Earth,117(B3):B03308.
Zheng Y,Shen W S,Zhou L Q,Yang Y J,Xie Z J,Ritzwoller M H. 2011. Crust and uppermost mantle beneath the North China Craton,northeastern China,and the sea of Japan from ambient noise tomography[J]. J Geophys Res:Solid Earth,116(B12):B12312. doi: 10.1029/2011JB008637
Zhou P X,Chevrot S,Lehujeur M,Xia S H,Yu C Q. 2022. Eikonal surface wave tomography of central and eastern China[J]. Geophys J Int,231(3):1865–1879. doi: 10.1093/gji/ggac296