基于程函面波成像的华北克拉通岩石圈三维高分辨率S波速度结构研究

钟世军, 吴建平, 司政亚, 朱红彬, 王薇

钟世军,吴建平,司政亚,朱红彬,王薇. 2024. 基于程函面波成像的华北克拉通岩石圈三维高分辨率S波速度结构研究. 地震学报,46(4):578−599. DOI: 10.11939/jass.20230052
引用本文: 钟世军,吴建平,司政亚,朱红彬,王薇. 2024. 基于程函面波成像的华北克拉通岩石圈三维高分辨率S波速度结构研究. 地震学报,46(4):578−599. DOI: 10.11939/jass.20230052
Zhong S J,Wu J P,Si Z Y,Zhu H B,Wang W. 2024. 3D High-resolution S-wave velocity structure of the lithosphere beneath North China Craton based on Eikonal surface wave tomography. Acta Seismologica Sinica46(4):578−599. DOI: 10.11939/jass.20230052
Citation: Zhong S J,Wu J P,Si Z Y,Zhu H B,Wang W. 2024. 3D High-resolution S-wave velocity structure of the lithosphere beneath North China Craton based on Eikonal surface wave tomography. Acta Seismologica Sinica46(4):578−599. DOI: 10.11939/jass.20230052

基于程函面波成像的华北克拉通岩石圈三维高分辨率S波速度结构研究

基金项目: 国家自然科学基金(42174117)资助
详细信息
    作者简介:

    钟世军,在读博士研究生,主要从事地震面波成像研究,e-mail:zhongsj@bjseis.gov.cn

    通讯作者:

    吴建平,博士,研究员,主要从事地震学与地球内部物理学研究,e-mail:wjpwu@cea-igp.ac.cn

  • 中图分类号: P315.63

3D High-resolution S-wave velocity structure of the lithosphere beneath North China Craton based on Eikonal surface wave tomography

  • 摘要:

    利用“中国地震科学台阵探测”项目Ⅱ期和Ⅲ期的流动地震台站以及中国区域地震台网中的部分固定台站的观测资料,采用程函面波成像方法获得了华北克拉通及周边区域10—120 s周期的瑞雷面波相速度分布和高分辨率的三维S波速度结构,并基于该速度模型估算了岩石圈厚度分布。结果显示,华北克拉通内部岩石圈厚度除了存在“西厚东薄”的一级分布特征外,还存在一些更小尺度的差异,包括鄂尔多斯地块内部岩石圈“南厚北薄”、鄂尔多斯地块周缘断陷带岩石圈显著的不均匀减薄以及燕山构造带与其南侧华北平原之间的显著差异等。山西断陷带北部与南部地区上地幔浅部(<100 km)存在不同程度的低速异常,它们被中部的高速异常区所分隔。在150 km以下深度从太行山南缘向北至山西断陷北缘存在一条NNE向展布的显著低速异常带,表明上地幔浅部南北部的低速异常在深部相连。结合已有的其它成像结果,我们推测这些低速异常起源于更深处(>200 km),并与由太平洋俯冲板块的滞留脱水导致的上地幔热物质上涌和小尺度地幔对流等密切相关。燕山构造带与华北平原的岩石圈结构存在明显差异,前者遭受的岩石圈破坏改造程度明显弱于后者,张家口—渤海地震带位于这两种不同壳幔结构的过渡带,地震活动较强,我们认为深部结构和热作用的显著差异,以及青藏高原远场挤压效应的共同作用是导致该区地震活动较强的主要原因。

    Abstract:

    The North China Craton has undergone intensely tectonic reactivation since the Mesozoic, which resulted in lithosphere modification, thinning and destruction, and accompanied by large amount of magmatic activity. The neotectonic movement is strong and destructive earthquakes occur frequently in this region. It is of great significance to obtain medium deformation and structure information in the crust and upper mantle for understanding these process. High-resolution lithosphere structure will provide important basis for understanding a series of scientific issues such as the tectonic deformation of crust-mantle media, the interaction between structural blocks, the deep environment of strong earthquakes, the spatial distribution range and dynamic mechanism of lithosphere thinning and destruction.

    Many researches about seismic tomography have been carried out in the North China Craton. But, the results of high-resolution of the lithosphere across the whole North China Craton are still few, due to the limitation of observation conditions or range, which limits further analysis on a series of scientific issues. As the rapid development of seismic array observation technology, some high-resolution seismic tomography techniques appear which suitable for dense arrays. The Eikonal surface wave tomography takes into account the bending phenomenon of seismic wave propagation path in complex media, and is suitable for both ambient noise and seismic surface wave. Its lateral resolution is equivalent to the average spacing of stations for arrays with relatively uniform distribution of stations. Considering that the ambient noise tomography is limited to medium and short periods (generally below 40 s), which mainly restricts the depth range from the crust to the top of the upper mantle so that it is difficult to carry out research and discussion on deeper depths. In this study, we choose the surface wave observation data to extract Rayleigh wave phase velocity of medium and long period by Eikonal surface wave tomograph, which can provide constraints on the entire lithosphere depth range.

    We collected the surface wave data of teleseismic events from 1513 seismic stations in this study, including 670 portable stations from ChinArray PhaseⅡ, 361 portable stations from ChinArray Phase Ⅲ−1 , 324 portable stations from ChinArray Phase Ⅲ−2 , and 158 permanent stations from China National Seismic Network (CSN). This is the most intensive seismic station bservations in the study region, with an average station spacing of about 35 km. Their corresponding observation periods are September 2013 to June 2016, November 2016 to January 2019, November 2017 to November 2020, and April 2016 to January 2019. The 3D high-resolution S-wave velocity model was obtained by two-step method in the depth range of 200 km below the study region. Firstly, We obtained the phase velocity of Rayleigh surface wave at 10−120 s by Eikonal surface wave tomography and extracted the pure path dispersion curves of each grid node on the surface. Secondly, we obtained these one-dimensional S-wave velocity models at these corresponding nodes by linear inversion method, then all the one-dimensional S-wave velocity models are combined to obtain the 3D S-wave velocity model. The lithosphere thickness is estimated by the empirical relationship between upper mantle S-wave velocity and pressure and temperature based on this model.

    The results showed that there are some smaller scale variations of the lithosphere thickness in the North China Craton in addition to the first-order distribution characteristics of ‘thick in the west and thin in the east’. Which includes: ① within the Ordos block, the lithosphere is thinner in the north than that in the south; ② within the peripheral rift zone around Ordos block, it is characterized by significantly heterogeneous thinned lithosphere; ③ there is significant difference between Yanshan Orogenic Belt and North China plain on its south side.In Shanxi rift zone, both the northern and southern regions exhibit varying degrees of low velocity anomalies in the upper mantle (<100 km), which are separated by a high velocity anomaly zone in the central area.At depth of more than 150 km, a remarkable low-velocity anomaly belt oriented NNE is observed from the southern edge of Taihang Mountain to the northern edge of Shanxi rift zone, indicating that the shallow upper mantle low-velocity anomalies are connected in the deep.Combined with some other research findings, we speculated that these low-velocity anomalies may stem from a greater depth (>200 km), potentially linked with the stagnant dehydration of the subducted Pacific plate and consequent upwelling of thermal material in the upper mantle, as well as small-scale mantle convection. The lithospheric structures of the Yanshan Orogenic belt is significantly different from North China Plain, with former experienced much less destruction and reconstruction. Zhangjiakou−Bohai seismic zone is located at the transitional region between these two distinct crust-mantle structures, and characterized by intense seismic activity. We concluded that the combination of significant differences in deep structure and thermal action, as well as the far-field extrusion effect of the Qinghai−XizangPlateau, mainly contributes to the intense seismic activity in this zone. There are some significant high velocity anomalies near the depth of 200 km in Yanshan Orogenic Belt, northern part of the North China Plain and around Bohai Bay. It is speculated that these anomalies may be related to the local delamination of the lithosphere, which represent the remnants of the Archean cratonic lithosphere sinking into the asthenosphere.

  • 破坏性地震发生后,会在短时间内造成大量的房屋建筑破坏、山体滑坡、道路中断等灾害,产生巨大的人员伤亡和经济损失,因此如何在灾后几小时内迅速获取人员伤亡、房屋建筑和道路破坏等灾情信息迫在眉睫。遥感以其影像获取速度快、范围广等特点成为获取地震灾情信息的主要途径,国内外研究人员利用高分辨率遥感影像对地震灾害信息的提取开展了很多研究,这些研究主要集中在灾区建筑物震害评估、道路检测和滑坡提取方面(薛腾飞等,2016)。建筑物震害评估内容主要包括依据遥感影像确定建筑物的空间分布、楼层数、占地面积、主要结构类型及建筑物单体或群体破坏等级,利用地震现场建筑物破坏程度调查结果修正遥感评估结果,汇总灾区建筑物震害信息并绘制建筑物震害遥感评估专题图。然而传统的正射影像只能获取建筑物顶部信息,很难获取建筑物侧面信息;由于无法分析建筑物侧面外墙的震害特征,通常结合现场建筑物震害调查资料、研究区域的建筑物结构类型以及遥感影像上破坏特征的表现,将建筑物震害程度划分为2—3类,这样往往会造成现场震害调查评估结果与遥感震害评估结果不一致(李玮玮等,2016)。

    近年发展起来的倾斜摄影技术,通过飞行器搭载一种或多种传感器,拍摄建筑物多个角度影像建模生成的高分辨率三维模型展现了建筑物丰富的细节层次和侧面纹理信息,弥补了以往传统遥感影像只能获取建筑物顶部信息的局限(Petrie,2009)。基于倾斜影像的建筑物震害信息提取方面目前已有很多研究成果。Gerke和Kerle (2011)对获取的航空倾斜影像运用监督分类方法提取出外墙、完整屋顶、破坏屋顶等震害信息,并依据欧洲98地震烈度表(Grünthal,1998)划分建筑物破坏等级,判断每个建筑的损坏类别。李胜军(2013)基于倾斜航空影像采用面向对象分类方法选取最优损毁特征组合,对震后建筑物顶面和立面进行损毁评估。Galarreta等(2015)结合高分辨率倾斜影像和三维点云数据,基于面向对象方法分析外墙和屋顶破坏特征,并依据欧洲98地震烈度表实现了砖混结构建筑物5种破坏等级(轻微破坏、中等破坏、严重破坏、非常严重破坏、完全倒塌)的划分。李玮玮等(2016)导出云南鲁甸地震三维模型对应的纹理影像,并结合面向对象法提取了震区建筑物混凝土外墙及裂纹灾害信息。林月冠(2016)利用倾斜摄影技术从人工目视解译、房屋倾斜程度计算、房屋立面裂缝目视识别等3个角度来评估建筑物的破坏程度。然而,以上这些研究方法并未说明如何基于倾斜影像获取完整的建筑物侧面和顶面破坏信息,以及利用这些震害特征如何判定建筑物单体的破坏等级。

    为此,本文拟利用2017年九寨沟MS7.0地震后无人机航拍的建筑物破坏信息照片,通过建模生成的三维影像获取建筑物侧面和顶部最佳纹理影像,确定最佳分割尺度,采用面向对象方法提取砖混结构建筑物单体的侧面震害信息,并判定建筑物单体的破坏等级。

    本文将三维模型打散,导出对应的纹理影像,通过金字塔模型中瓦片的坐标范围和建筑物单体的空间位置选取最佳纹理影像,采用面向对象法提取建筑物外墙及墙皮脱落信息、目视识别裂缝信息。下面将分别叙述纹理获取、最佳纹理影像选取、影像分割和震害信息提取所用到的方法。

    三维实景模型是利用点云数据构建不规则三角网,将纹理映射到三角面外表生成(Wang et al,2008)。因此,采用microstation软件的元素打散功能,将三维模型导入后不需要设置其它参数,可以快速打散,实现贴图纹理与不规则三角网的分离,从而获取对应纹理影像。

    最佳纹理影像的选取方法主要有3种:定位筛选、角度筛选和面积筛选(卜松涛等,2014)。本文获取的3 mxb格式的瓦片数据自带坐标范围,因此便于采用定位筛选方法,主要步骤为:① 选取建筑物单体的空间位置坐标,与瓦片坐标范围进行比较,从而确定建筑物单体的瓦片位置;② 瓦片中层次模型以 “Tile+存放瓦片的文件名称+层级号+分块行列号” 命名,从瓦片左下角开始,按照从下至上、从左到右的规则进行切片和命名,低层次模型获取的纹理影像都以对应的高层次三维模型名字命名。从瓦片最低层次模型的纹理影像开始选择最佳影像层级,以模型建筑物单体完整、同一纹理影像尽量包含建筑物侧面和顶面、纹理影像上外墙、墙皮脱落处和裂缝等震害信息清晰可见为原则,纹理影像拥有对应高层次模型的层级号,该层级号即为最佳影像的层级号;③ 最佳影像层被切割成许多块,将建筑物单体的空间位置与该层中每一块的坐标范围进行比较,所确定的建筑物单体所在层中块的位置即为建筑物单体的最佳影像层,该层级所对应的纹理影像即为最佳纹理影像。

    影像分割是面向对象分类方法的基础。由于遥感影像中地物的多样性,不同类别的地物对应于不同的分割尺度,因此多尺度分割算法成为面向对象最常用的分割算法(安立强等,2011)。地物最优分割尺度决定影像分类的效果。本文结合加权均值方差法和目视试错法获取外墙和墙皮脱落处的最优分割尺度。

    均值方差法的基本原理为:增加影像层中混合对象时,相邻对象间的光谱差异降低(Woodcock,Strahler,1987),对象均值方差变小;相反,纯对象的增多使得相邻对象间的光谱异质性增大,对象的均值方差增大(黄慧萍,2003)。均值方差计算公式为

    ${X_L} {\text{=}} \frac{1}{n}\sum\limits_{i {\text{=}} 1}^n {{X_{Li}}}{\text{,}}$

    (1)

    式中:XL为影像对象在L波段的平均值,XLiL波段影像第i个像元的灰度值,n为对象中的像元个数。所有影像对象在L波段上的均值为

    ${\overline X_L} {\text{=}} \frac{1}{m}\sum\limits_{i = 1}^m {{X_L}}{\text{,}}$

    (2)

    式中m为影像对象个数。L波段上影像对象的均值方差为

    $S_L^2 {\text{=}} \frac{1}{m}\sum\limits_{i {\text{=}} 1}^m {{{({X_L} {\text{-}} {{\overline X}_L})}^2}}{\text{,}}$

    (3)

    当均值方差达到峰值时所对应的尺度即为最优分割尺度的参考值(黄慧萍,2003)。

    遥感影像具有多波段信息优势,但由于均值方差法仅考虑单波段信息,因此利用加权均值方差法将分割所设定的L波段权重赋予L波段均值方差(朱红春等,2015),计算整幅影像对象加权均值方差,从而获取最优分割尺度的参考值,结合目视试错法得到最优分割尺度,其中整幅影像对象的加权均值方差为

    ${S^2} {\text{=}} \sum\limits_{L {\text{=}} 1}^N {{b_L}} \cdot S_L^2{\text{,}}$

    (4)

    式中,N为波段数,bL为设置的波段权重。

    本文对影像进行最优尺度分割后,采用阈值分类和模糊分类提取建筑物震害的精细信息。阈值分类又称为指定分类,通过选择表征影像对象特征的灰度阈值进行分类。由于一个特征难以明确划分类别,阈值分类通常在类描述中使用,即结合若干个阈值条件一起使用。模糊分类描述了像元被划分至某个地物类别的概率,它将对象像元特征值转化为0—1之间的隶属度值,根据像元隶属度值的变化走向选择最佳的隶属度函数并将对象像元分类至需要提取的目标地物中(颜宏娟,2008)。对纹理影像建筑物震害特征分析后,通过人工多次试验选取表征建筑物墙体及墙皮脱落处信息的特征灰度阈值和隶属度曲线进行分类。

    2017年8月8日21时19分46秒,四川省阿坝州(33.20°N,103.82°E)发生MS7.0地震,震源深度为20 km。本文使用的试验数据是无人机航拍漳扎镇内千古情风景区和漳扎镇小学建筑物破坏的三维影像。李静等(2018)对漳扎镇的实地调查显示,该地区房屋建筑的主要结构类型(所占比例)为砖混结构(49.57%)、框架结构(23.6%)、木结构(26.83%)等3类,研究区域的房屋建筑物为砖混结构。三维影像是等间距瓦片切割形成的多细节层次模型,影像分辨率为10 cm,数据格式为3 mxb,每一个3 mxb数据文件拥有对应的瓦片层次坐标范围。

    本文以九寨沟千古情风景区的三维模型为例来选取最佳纹理影像,使用microstation软件的元素打散功能将三维模型打散,获取对应的纹理影像,依据最佳纹理影像的定位筛选方法来获取建筑物单体所对应的最佳层级纹理影像。

    千古情三维模型被分割成33个瓦片,瓦片中最低层级号为16,最高层级号为23。首先,选取有震害信息的建筑物单体空间位置坐标与33个瓦片的坐标范围进行对比,确定建筑物单体在Tile_p003_p002瓦片中;然后,从16层级三维模型开始获取对应的纹理影像,该纹理影像以对应的20层级三维模型名字命名,17层级、18层级、19层级的纹理影像均以对应的20层级模型名字命名,20层级纹理影像以对应的21层级模型名字命名。选择20层级和21层级同一建筑物单体的三维模型及纹理影像进行分析,结果如图1所示。从图1a1b中可以看出,两个层级均拥有完整的建筑物单体,但21层级的建筑物单体侧面和顶面分布在不同的纹理影像中,同一墙体瓦片切割破碎,导致震害信息分布在不同的纹理影像中(图1d)。20层级的建筑物单体的顶面和侧面墙体分布在同一纹理影像中,同一墙体上的震害信息未被进一步分割(图1c),因此选择20层级为最佳影像层级。最后,20影像层级被分成5块,选择建筑物单体的空间位置坐标与这5块影像层坐标范围进行对比,确定建筑物位于第一块影像层中,该影像层即为建筑物单体的最佳影像层,所对应的纹理影像即为最佳纹理影像。

    图  1  千古情风景区建筑物的三维模型和纹理影像
    (a) 20级三维模型;(b) 21级三维模型;(c) 20级纹理影像;(d) 21级纹理影像
    Figure  1.  Three-dimensional models and texture images of building in Qianguqing scenic spot
    (a) 20-level 3D model;(b) 21-level 3D model;(c) 20-level texture image;(d) 21-level texture image

    本文选取震害特征明显的一块墙体使用不同分割尺度进行分割,形状因子和紧致度因子分别设为0.3和0.5,分割尺度从20至90不等(以10为尺度间隔)。通过对分割后的影像分析可知:当尺度为30时,分割过于细碎,特别是裂缝和墙面脱落处,如图2a所示;当尺度为90时,分割效果较差,裂缝与外墙混合在一起,没有被很好地分割,如图2b所示。

    图  2  分割尺度分别为30 (a),90 (b),50 (c)和70 (d)的千古情风景区建筑物的纹理影像
    Figure  2.  Texture images of the building in Qianguqing scenic spot with scales of 30 (a),90 (b),50 (c) and 70 (d)

    因此,选取尺度为30,40,50,60,70,80,90进行多尺度分割,利用式(4)计算分割影像的加权均值方差并绘制加权均值方差随分割尺度的变化曲线图(图3),曲线的峰值是不同地物的最优分割参考值即50和70。通过对比分割尺度为50和70的影像层(图2cd)可知:当分割尺度为50时,分割效果较好,裂缝外墙被很好地分割;分割尺度为70时,裂缝和墙皮脱落处被分割到外墙体中,没有被很好地分割。因此,选择50作为外墙和墙皮脱落信息的最优分割尺度。

    图  3  对象加权均值方差随分割尺度的变化图
    Figure  3.  Variation of weighted mean variance of object with segmentation scale

    基于面向对象分类方法提取地物,需要根据影像对象的光谱、形状、纹理、上下文关系等特征建立规则集(赵妍等,2016)。本文提取的是震后建筑物外墙及墙皮脱落信息,因此首先分析倒塌、破坏和未倒塌这三种建筑物的破坏状态在遥感影像上的特征表现:影像上倒塌房屋建筑的震害特征一般为主体结构倒塌,屋顶垮塌,建筑物周围地面有废墟分布,轮廓不清晰,几何形状杂乱无章,纹理不规则,灰度发生明显变化(张景发等,2001),对于倾斜三维影像首先从正面和侧面影像大体推断出房屋的结构类型,倒塌房屋的楼层数减少,建筑物占地面积增大,主体结构变形、倾斜或倒塌,墙体倒塌,斑点状废墟分布周围;破坏房屋建筑的震害特征一般为主体结构未倒塌,屋顶不规整、局部损坏,有落瓦、塌陷现象,女儿墙倒塌,墙体破坏或部分变形(张雪华,2017),对于倾斜影像,从外墙体、窗口处、窗间墙、门口等处的裂缝类型和数量、墙皮脱落信息以及屋顶破坏程度等方面(帅向华等,2018),依据建(构)筑地震破坏等级划分标准(中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会,2009)精细评估建筑物单体的震害程度;未倒塌房屋建筑的屋顶无明显损坏和陷落现象,轮廓完整,边缘清晰,几何形状规则,纹理均匀。

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    表  1  规则集特征参数及阈值
    Table  1.  Feature parameters and thresholds of rule sets
    建筑物震害信息提取对象特征参数及其阈值
    外墙面$\tfrac{{\overline R }}{{\overline R {\simfont\text{+}} \overline G {\simfont\text{+}} \overline B }}$>0.42,72<$\tfrac{{{\overline{R}} {\simfont\text{+}} {\overline{B}} {\simfont\text{+}} {\overline{G}} }}{3}$<144,267<A<543,0.5<C<0.8,7<GLDV<32
    墙皮脱落处0.56<Y<1,−41<2$ {\overline { G}} $${\overline { B}} $${\overline { R}} $<−28,16<GLDV<24,1.8<S<2.6,1.3<C<2.3
    下载: 导出CSV 
    | 显示表格

    根据建(构)筑物地震破坏等级划分规范(中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会,2009)对建筑物单体的墙皮脱落和裂缝震害信息进行分析,并判定其破坏等级。本文对3个受损建筑物单体进行分析,震害提取结果如图4d,5d和6d所示,其中蓝色表示墙皮脱落信息,红色表示外墙,青色表示裂缝。

    图4d所示的建筑物单体震害信息提取结果中可见,3个墙面出现墙皮脱落现象,其中:一个墙面的窗口出现裂缝,抹灰层表面测量宽度介于2—8 cm之间;另一个为女儿墙面,该墙面出现严重裂缝,表层混凝土有明显、大面积的酥碎脱落。目视判读该单体为多层砖混结构,有两处裂缝仅肉眼可见,属于细微裂缝。根据建(构)筑物地震破坏等级划分规范,该砖混结构的建筑物单体属于中等破坏。

    图  4  千古情风景区建筑物震害信息提取结果
    图(d)中蓝色表示墙皮脱落信息,红色表示外墙,青色表示裂缝,图5d和6d与此相同(a) 航拍照片;(b) 三维模型;(c) 纹理影像;(d) 震害信息提取结果
    Figure  4.  Extraction results of building seismic damage information in Qianguqing scenic spot
    In Fig. (d),blue indicates the wall peeling information,red indicates the exterior wall,and cyan indicates the crack,which are the same in Figs. 5d and 6d. (a) Aerial photography;(b) 3D model;(c) Texture image;(d) Extraction results of seismic damage information

    图5d所示,纹理影像中3个建筑物外墙面属于同一个承重墙体,该墙体窗口处、窗户间和墙面有多处水平裂缝和大面积墙皮脱落,在抹灰层表面测得裂缝宽度介于3—20 cm之间,墙体严重破坏。从三维影像和航拍照片判定该砖混结构单体为3层,建筑物屋顶基本完好,侧面墙体窗口出现多处墙皮脱落和水平裂缝。根据建(构)筑物地震破坏等级划分规范,该砖混结构的建筑物单体属于严重破坏。

    图  5  漳扎镇邮政储蓄银行震害信息提取结果
    (a) 航拍照片;(b) 三维模型;(c) 纹理影像;(d) 震害信息提取结果
    Figure  5.  Extraction results of building seismic damage information in Zhangzha town postal savings bank
    (a) Aerial photography;(b) 3D model;(c) Texture image;(d) Extraction results of seismic damage information

    从航拍照片和三维模型目视解译该建筑物单体为七层砖混结构,屋顶基本完好,图6d中,该建筑物单体第一到六层侧面4个墙面均有大量的混凝土掉落,第七层有1个墙面出现多个 “X” 型裂缝,在砖砌体表面测得裂缝宽度介于2—6 cm之间,门口和窗口处均出现裂缝,其余三个墙面的混凝土大面积脱落,墙体严重破坏。根据建(构)筑物地震破坏等级划分规范,该砖混结构的建筑物单体属于中等破坏。

    图  6  藏式碉楼建筑物震害信息提取结果
    (a) 航拍照片;(b) 三维模型;(c) 纹理影像;(d) 震害信息提取结果
    Figure  6.  Seismic damage information extraction results of Tibetan watchtower building
    (a) Aerial photography;(b) 3D model;(c) Texture image;(d) Extraction results of seismic damage information

    本文研究三维模型建模原理和金字塔瓦片切割规则,并通过九寨沟地震后三维模型快速导出纹理影像,根据定位筛选最佳纹理影像,之后采用面向对象方法提取纹理影像中建筑物外墙和墙皮脱落信息,评估3个砖混结构的建筑物单体侧面外墙裂缝等震害信息的破坏程度,判定建筑物单体为中等、严重这两个破坏等级,具有传统正射遥感无法比拟的优势。

    需要指出的是,本文获得的3mxb格式三维模型自带瓦片坐标范围,而诸如osgb和s3c等其它三维模型的数据格式无瓦片坐标范围,这使得筛选最佳纹理影像方法存在很大的局限性。另外,倾斜摄影三维建模是不规则三角网经过选取最优纹理影像映射生成,这为建筑物震害的提取增加了难度:① 获取的纹理影像具有不规则性、多样性和破碎性,建筑物外墙面被切割在不同的纹理影像中。如何快速确定具有震害信息的建筑物纹理影像在哪一瓦片中的哪一层级成为关键。本文虽然提出利用其纹理影像命名特点和空间位置坐标,但仍需采用人机交互的形式,降低了提取效率。因此获取高分辨率建筑物纹理需要尝试新的方法,如利用三维点云数据通过分割算法直接获取建筑物5个方向的立面影像(方智辉等,2017);② 面向对象方法提取墙体、墙皮脱落信息时,由于其杂乱性和不规则性导致很难将一些轻微裂缝与外墙体分割,在确定最优分割尺度时只选取影像的光谱特征,并未考虑形状、纹理等特征对影像分割效果的影响,而对最优分割尺度的确定需要对全部特征进行有效选择;③ 阈值分类和模糊分类需要经过大量人工试验选取特征或特征组合建立最优规则集,降低了提取的精度和效率。因此基于倾斜影像提高建筑物震害信息的精度和效率仍需进一步研究。

  • 图  8   不同深度的S波速度分布(图中v0代表每个深度h对应的平均速度)

    Figure  8.   S-wave velocity maps at different depths (v0 represents the average S-wave velocity corresponding to each depth h

    (a) h=10 km;(b) h=20 km;(c) h=40 km;(d) h=50 km;(e) h=60 km;(f) h=80 km; (g) h=100 km;(h) h=150 km;(i) h=200 km

    图  1   研究区构造背景分布图

    图中地震为1970年以来记录到的5级以上地震(国家地震局震害防御司,1995中国地震局震害防御司,1999)。左上角图中图显示了华北克拉通及其周边区域更大范围的构造背景。其中蓝色矩形代表放大区域范围;红色实线代表板块边界(Bird,2003);黑色空心箭头示意板块运动方向(Kreemer et al,2014

    Figure  1.   Tectonic setting of the studied area

    The represented earthquakes are MS≥5.0 recorded since 1970 (Department of Earthquake Disaster Prevention,State Seismological Bureau,1995Department of Earthquake Disaster Prevention,China Earthquake Administration,1999). The upper left image shows the larger tectonic background of the North China Craton and its surrounding region;The blue rectangle represents the location of this study area;the solid red lines represent plate boundaries (Bird,2003); the black hollow arrows indicate the motion direction of the plates (Kreemer et al,2014

    图  2   本研究所用地震台站分布

    Figure  2.   Distribution of seismic stations in this study

    图  3   研究中所用地震事件分布

    Figure  3.   Distribution of seismic events in the study

    图  4   不同周期的基阶瑞雷面波相速度对S波速度的敏感曲线

    Figure  4.   Sensitivity kernel curves of fundamental Rayleigh wave phase velocity to shear wave velocity at different periods

    (a) 10—40 s;(b) 40—120 s

    图  5   面波频散曲线反演一维S波速度结构示例(35.00°N,112.25°E)

    (a) 反演前后的一维S波速度模型;(b) 反演前后频散曲线的拟合情况;(c) 反演前后的频散残差分布

    Figure  5.   Example of inversion of surface wave dispersion data for S-wave velocity (35.00°N,112.25°E)

    (a) The 1-D S-wave velocity models pre- and post-inversion;(b) The fitting distribution of dispersion curves pre- and post-inversion;(c) The dispersion residual distribution pre- and post-inversion

    图  6   相速度误差分布

    Figure  6.   Error distribution of the phase velocity

    (a) T=10 s;(b) T=14 s;(c) T=20 s;(d) T=25 s;(e) T=32 s;(f) T=40 s;(g) T=50 s; (h) T=60 s;(i) T=70 s;(j) T=80 s;(k) T=100 s;(l) T=120 s

    图  7   瑞雷面波相速度分布图像(图中v0代表每个周期T对应的平均相速度)

    Figure  7.   Rayleigh wave phase velocity maps at different periods (v0 represents the average phase velocity corresponding to each period T

    (a) T=10 s;(b) T=14 s;(c) T=20 s;(d) T=25 s;(e) T=32 s;(f) T=40 s;(g) T=50 s; (h) T=60 s;(i) T=70 s;(j) T=80 s;(k) T=100 s;(l) T=120 s

    图  9   华北克拉通及其周边区域岩石圈厚度分布

    Figure  9.   Thickness of the lithosphere in North China Craton and its surrounding regions

    图  10   S波速度纵向剖面(a—k)及剖面位置(l)

    Figure  10.   Vertical profiles of the S-wave velocity (a−k) and location of these profiles (l)

  • 蔡光耀,王未来,吴建平,房立华. 2021. 鄂尔多斯及邻区基于程函方程的面波层析成像[J]. 地球物理学报,64(4):1215–1226. doi: 10.6038/cjg2021O0070

    Cai G Y,Wang W L,Wu J P,Fang L H. 2021. Surface wave tomography based on Eikonal tomography in Ordos and adjacent areas[J]. Chinese Journal of Geophysics,64(4):1215–1226 (in Chinese).

    陈国达. 1956. 中国地台“活化区”的实例并着重讨论“华夏古陆”问题[J]. 地质学报,36(3):239–271.

    Chen G D. 1956. Examples of “activizing region” in the Chinese platform with special reference to the “Cathaysla” problem[J]. Acta Geologica Sinica,36(3):239–271 (in Chinese).

    邓晋福,莫宣学,赵海玲,罗照华,杜杨松. 1994. 中国东部岩石圈根/去根作用与大陆“活化”:东亚型大陆动力学模式研究计划[J]. 现代地质,8(3):349–356.

    Deng J F,Mo X X,Zhao H L,Luo Z H,Du Y S. 1994. Lithosphere root/de-rooting and activation of the east China continent[J]. Geoscience,8(3):349–356 (in Chinese).

    邓起东. 2007. 中国活动构造图(1∶400万)[M]. 北京:地震出版社:1−2.

    Deng Q D. 2007. Map of Active Tectonics in China (1∶4 million)[M]. Beijing:Seismological Press:1−2 (in Chinese).

    范蔚茗,Menzies M A. 1992. 中国东部古老岩石圈下部的破坏和软流圈地幔的增生[J]. 大地构造与成矿学, 16 :171−180.

    Fan W M,Menzies M A. 1992. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China[J]. Geotecton Metal, 16 :171−180 (in Chinese).

    房立华,吴建平,吕作勇. 2009. 华北地区基于噪声的瑞利面波群速度层析成像[J]. 地球物理学报,52(3):663–671.

    Fang L H,Wu J P,Lü Z Y. 2009. Rayleigh wave group velocity tomography from ambient seismic noise in North China[J]. Chinese Journal of Geophysics,52(3):663–671 (in Chinese). doi: 10.1002/cjg2.1388

    葛粲,郑勇,熊熊. 2011. 华北地区地壳厚度与泊松比研究[J]. 地球物理学报,54(10):2538–2548. doi: 10.3969/j.issn.0001-5733.2011.10.011

    Ge C,Zheng Y,Xiong X. 2011. Study of crustal thickness and Poisson ratio of the North China Craton[J]. Chinese Journal of Geophysics,54(10):2538–2548 (in Chinese).

    宫猛,徐锡伟,张新东,欧阳龙斌,江国焰,董博. 2017. 华北东部基于背景噪声的壳幔三维S波速度结构[J]. 地震地质,39(1):130–146. doi: 10.3969/j.issn.0253-4967.2017.01.010

    Gong M,Xu X W,Zhang X D,Ouyang L B,Jiang G Y,Dong B. 2017. Three-dimensional S-wave velocity distribution based on ambient noise analysis in eastern north[J]. Seismology and Geology,39(1):130–146 (in Chinese).

    国家地震局震害防御司. 1995. 中国历史强震目录(公元前23世纪—1911年)[M]. 北京:地震出版社:1−514.

    Department of Earthquake Disaster Prevention,China Earthquake Administration. 1995. Catalogue of Historical Strong Earthquakes in China (BC 23rd century-AD1911)[M]. Beijing:Seismological Press:1−514 (in Chinese).

    郭震,陈永顺,殷伟伟. 2015. 背景噪声面波与布格重力异常联合反演:山西断陷带三维地壳结构[J]. 地球物理学报,58(3):821–831. doi: 10.6038/cjg20150312

    Guo Z,Chen Y S,Yin W W. 2015. Three-dimensional crustal model of Shanxi graben from 3D joint inversion of ambient noise surface wave and Bouguer gravity anomalies[J]. Chinese Journal of Geophysics,58(3):821–831 (in Chinese).

    黄汲清,任纪舜,姜春发,张之孟,许志琴. 1977. 中国大地构造基本轮廓[J]. 地质学报,51(2):117–135.

    Huang J Q,Ren J S,Jiang C F,Zhang Z M,Xu Z Q. 1977. An outline of the tectonic characteristics of China[J]. Acta Geologica Sinica,51(2):117–135 (in Chinese).

    黄忠贤. 2011. 华北地区地壳上地幔速度各向异性研究[J]. 地球物理学报,54(3):681–691. doi: 10.3969/j.issn.0001-5733.2011.03.007

    Huang Z X. 2011. Velocity anisotropy in the crust and upper mantle of North China[J]. Chinese Journal of Geophysics,54(3):681–691 (in Chinese).

    黄忠贤,胥颐,郝天珧,彭艳菊,郑月军. 2009. 中国东部海域岩石圈结构面波层析成像[J]. 地球物理学报,52(3):653–662.

    Huang Z X,Xu Y,Hao T Y,Peng Y J,Zheng Y J. 2009. Surface wave tomography of lithospheric structure in the seas of east China[J]. Chinese Journal of Geophysics,52(3):653–662 (in Chinese).

    刘靖,吴建平,王未来,蔡光耀,王薇. 2021. 鄂尔多斯及周边区域噪声层析成像研究[J]. 地震学报,43(2):152–167. doi: 10.11939/jass.20200099

    Liu J,Wu J P,Wang W L,Cai G Y,Wang W. 2021. Ambient noise tomography in the Ordos block and its surrounding areas[J]. Acta Seismologica Sinica,43(2):152–167 (in Chinese).

    吕作勇,吴建平. 2010. 华北地区地壳上地幔三维P波速度结构[J]. 地震学报,32(1):1–11. doi: 10.3969/j.issn.0253-3782.2010.01.001

    Lü Z Y,W J P. 2010. 3-D P wave velocity structure of crust and upper mantle beneath North China[J]. Acta Seismologica Sinica,32(1):1–11 (in Chinese).

    马杏垣,吴正文,谭应佳,郝春荣. 1979. 华北地台基底构造[J]. 地质学报,53(4):293–304.

    Ma X Y,Wu Z W,Tan Y J,Hao C R. 1979. Tectonics of the North China platform basement[J]. Acta Geologica Sinica,53(4):293–304 (in Chinese).

    潘佳铁,吴庆举,李永华,张风雪,张广成. 2011. 华北地区瑞雷面波相速度层析成像[J]. 地球物理学报,54(1):67–76. doi: 10.3969/j.issn.0001-5733.2011.01.008

    Pan J T,Wu Q J,Li Y H,Zhang F X,Zhang G C. 2011. Rayleigh wave tomography of the phase velocity in North China[J]. Chinese Journal of Geophysics,54(1):67–76 (in Chinese).

    任纪舜,姜春发,张正坤,秦德余. 1980. 中国大地构造及其演化[M]. 北京:科学出版社:1−124.

    Ren J S,Jiang C F,Zhang Z K,Qin D Y. 1980. The Geotectonic Evolution of China[M]. Beijing:China Science Publishing:1−124 (in Chinese).

    汤艳杰,英基丰,赵月鹏,许欣然. 2021. 华北克拉通岩石圈地幔特征与演化过程[J]. 中国科学:地球科学,51(9):1489–1503.

    Tang Y J,Ying J F,Zhao Y P,Xu X R. 2021. Nature and secular evolution of the lithospheric mantle beneath the North China Craton[J]. Science China Earth Sciences,64(9):1492–1503. doi: 10.1007/s11430-020-9737-4

    王恺,熊熊,周宇明,冯雅杉. 2020. 联合多种资料确定华北岩石圈三维热—流变结构:对裂陷形成的意义[J]. 中国科学:地球科学,50(7):946–961.

    Wang K,Xiong X,Zhou Y M,Feng Y S. 2020. Three-dimensional thermo-rheological structure of the lithosphere in the North China Craton determined by integrating multiple observations:Implications for the formation of rifts[J]. Science China Earth Sciences,63(7):969–984. doi: 10.1007/s11430-019-9566-1

    危自根,储日升,陈凌. 2015. 华北克拉通地壳结构区域差异的接收函数研究[J]. 中国科学:地球科学,45(10):1504–1514.

    Wei Z G,Chu R S,Chen L. 2015. Regional differences in crustal structure of the North China Craton from receiver functions[J]. Science China Earth Sciences,58(12):2200–2210. doi: 10.1007/s11430-015-5162-y

    吴福元,徐义刚,高山,郑建平. 2008. 华北岩石圈减薄与克拉通破坏研究的主要学术争论[J]. 岩石学报,24(6):1145–1174.

    Wu F Y,Xu Y G,Gao S,Zheng J P. 2008. Lithospheric thinning and destruction of the North China Craton[J]. Acta Petrologica Sinica,24(6):1145–1174 (in Chinese).

    吴福元,徐义刚,朱日祥,张国伟. 2014. 克拉通岩石圈减薄与破坏[J]. 中国科学:地球科学,44(11):2358–2372.

    Wu F Y,Xu Y G,Zhu R X,Zhang G W. 2014. Thinning and destruction of the cratonic lithosphere:A global perspective[J]. Science China Earth Sciences,57(12):2878–2890 (in Chinese). doi: 10.1007/s11430-014-4995-0

    武敏捷,林向东,徐平. 2011. 华北北部地区震源机制解及构造应力场特征分析[J]. 大地测量与地球动力学,31(5):39–43. doi: 10.3969/j.issn.1671-5942.2011.05.009

    Wu M J,Lin X D,Xu P. 2011. Analysis of focal mechnism and tectonic stress field features in northern part of North China[J]. Journal of Geodesy and Geodynamics,31(5):39–43 (in Chinese).

    武岩,丁志峰,王兴臣,朱露培. 2018. 华北克拉通地壳结构及动力学机制分析[J]. 地球物理学报,61(7):2705–2718. doi: 10.6038/cjg2018L0244

    Wu Y,Ding Z F,Wang X C,Zhu L P. 2018. Crustal structure and geodynamics of the North China Craton derived from a receiver function analysis of seismic wave data[J]. Chinese Journal of Geophysics,61(7):2705–2718 (in Chinese).

    谢富仁,崔效锋,赵建涛,陈群策,李宏. 2004. 中国大陆及邻区现代构造应力场分区[J]. 地球物理学报,47(4):654–662. doi: 10.3321/j.issn:0001-5733.2004.04.016

    Xie F R,Cui X F,Zhao J T,Chen Q C,Li H. 2004. Regional division of the recent tectonic stress field in China and adjacent areas[J]. Chinese Journal of Geophysics,47(4):654–662 (in Chinese).

    胥鸿睿. 2018. 鄂尔多斯块体东缘横波速度结构及各向异性研究[D]. 武汉:中国地质大学:101−118.

    Xu H R. 2018. Study on the Shear Velocity Structure and Anisotropy of Eastern Part of Ordos Block[D]. Wuhan:China University of Geosciences:101−118 (in Chinese).

    徐小兵,赵亮,王坤,杨建锋. 2018. 华北克拉通地区有限频体波层析成像:克拉通破坏的空间非均匀性[J]. 中国科学:地球科学,48(9):1223–1247.

    Xu X B,Zhao L,Wang K,Yang J F. 2018. Indication from finite-frequency tomography beneath the North China Craton:The heterogeneity of craton destruction[J]. Science China Earth Sciences,61(9):1238–1260. doi: 10.1007/s11430-017-9201-y

    徐锡伟,吴卫民,张先康,马胜利,马文涛,于贵华,顾梦林,江娃利. 2002. 首都圈地区地壳最新构造变动与地震[M]. 北京:科学出版社:5−18.

    Xu X W,Wu W M,Zhang X K,Ma S L,Ma W T,Yu G H,Gu M L,Jiang W L. 2002. The Latest Crustal Deformation and Earthquakes in Beijing Area[M]. Beijing:Science Press:5−18 (in Chinese).

    许忠淮. 2001. 东亚地区现今构造应力图的编制[J]. 地震学报,23(5):492–501. doi: 10.3321/j.issn:0253-3782.2001.05.005

    Xu Z H. 2001. A present-day tectonic stress map for eastern Asia region[J]. Acta Seismologica Sinica,23(5):492–501 (in Chinese).

    张风雪,李永华,吴庆举,丁志峰. 2011. FMTT方法研究华北及邻区上地幔P波速度结构[J]. 地球物理学报,54(5):1233–1242. doi: 10.3969/j.issn.0001-5733.2011.05.012

    Zhang F X,Li Y H,Wu Q J,Ding Z F. 2011. The P wave velocity structure of upper mantle beneath the North China and surrounding regions from FMTT[J]. Chinese Journal of Geophysics,54(5):1233–1242 (in Chinese).

    张岳桥,施炜,董树文. 2019. 华北新构造:印欧碰撞远场效应与太平洋俯冲地幔上涌之间的相互作用[J]. 地质学报,93(5):971–1001. doi: 10.3969/j.issn.0001-5717.2019.05.001

    Zhang Y Q,Shi W,Dong S W. 2019. Neotectonics of North China:Interplay between far-field effect of India-Eurasia collision and Pacific subduction related deep-seated mantle upwelling[J]. Acta Geologica Sinica,93(5):971–1001 (in Chinese).

    郑建平,路凤香,O’Reilly S Y,Griffin W L,张明. 1999. 华北地台东部古生代与新生代岩石圈地幔特征及其演化[J]. 地质学报,73(1):47–56. doi: 10.3321/j.issn:0001-5717.1999.01.006

    Zheng J P,Lu F X,O’Reilly S Y,Griffin W L,Zhang M. 1999. Comparison between Palaeozoic and Cenozoic Lithospheric mantle in the eastern part of the North China Block:With a discussion of mantle evolution[J]. Acta Geologica Sinica,73(1):47–56 (in Chinese). doi: 10.1111/j.1755-6724.1999.tb00811.x

    郑建平. 2009. 不同时空背景幔源物质对比与华北深部岩石圈破坏和增生置换过程[J]. 科学通报,54(14):1990–2007.

    Zheng J P. 2009. Comparison of mantle-derived matierals from different spatiotemporal settings:Implications for destructive and accretional processes of the North China Craton[J]. Chinese Science Bulletin,54(19):3397–3416. doi: 10.1007/s11434-009-0308-y

    郑现,赵翠萍,周连庆,郑斯华. 2012. 中国大陆中东部地区基于背景噪声的瑞利波层析成像[J]. 地球物理学报,55(6):1919–1928. doi: 10.6038/j.issn.0001-5733.2012.06.013

    Zheng X,Zhao C P,Zhou L Q,Zheng S H. 2012. Rayleigh wave tomography from ambient noise in Central and Eastern Chinese mainland[J]. Chinese Journal of Geophysics,55(6):1919–1928 (in Chinese).

    郑永飞,徐峥,赵子福,戴立群. 2018. 华北中生代镁铁质岩浆作用与克拉通减薄和破坏[J]. 中国科学:地球科学,48(4):379–414.

    Zheng Y F,Xu Z,Zhao Z F,Dai L Q. 2018. Mesozoic mafic magmatism in North China:Implications for thinning and destruction of cratonic lithosphere[J]. Science China Earth Sciences,61(4):353–385. doi: 10.1007/s11430-017-9160-3

    中国地震局震害防御司. 1999. 中国近代地震目录(公元1912年—1990年MS≥4.7)[M]. 北京:中国科学技术出版社:1−637.

    Department of Earthquake Disaster Prevention,China Earthquake Administration. 1999. Catalogue of Contemporary Seismic Events in China (AD 1912−1990 MS≥4.7)[M]. Beijing:China Science Press:1−637 (in Chinese).

    中国地震科学探测台阵数据中心. 2011. 中国地震科学探测台阵波形数据:喜马拉雅计划[DB/OL]. [2020−06−12]. http://www.chinarraydmc.cn/map/station/distribution.

    China Seismic Array Data Management Center. 2011. China Seismic Array waveform data of Himalaya project[DB/OL]. [2020−06−12]. http://www.chinarraydmc.cn/map/station/distribution (in Chinese).

    钟世军. 2016. 青藏高原东北缘及周边地区瑞利面波层析成像研究[D]. 北京:中国地震局地球物理研究所:21−36.

    Zhong S J. 2016. The Study of Rayleigh Surface Wave Tomography in and Around the Northeastern Margin of the Tibetan Plateau[D]. Beijing:Institute of Geophysics,China Earthquake Administration:21−36 (in Chinese).

    朱日祥,郑天愉. 2009. 华北克拉通破坏机制与古元古代板块构造体系[J]. 科学通报,54(14):1950–1961.

    Zhu R X,Zheng T Y. 2009. Destruction geodynamics of the North China Craton and its Paleoproterozoic plate tectonics[J]. Chinese Science Bulletin,54(19):3354–3366. doi: 10.1007/s11434-009-0451-5

    朱日祥,陈凌,吴福元,刘俊来. 2011. 华北克拉通破坏的时间、范围与机制[J]. 中国科学:地球科学,41(5):583–592.

    Zhu R X,Chen L,Wu F Y,Liu J L. 2011. Timing,scale and mechanism of the destruction of the North China Craton[J]. Science China Earth Sciences,54(6):789–797. doi: 10.1007/s11430-011-4203-4

    朱日祥,徐义刚,朱光,张宏福,夏群科,郑天愉. 2012. 华北克拉通破坏[J]. 中国科学:地球科学,42(8):1135–1159.

    Zhu R X,Xu Y G,Zhu G,Zhang H F,Xia Q K,Zheng T Y. 2012. Destruction of the North China Craton[J]. Science China Earth Sciences,55(10):1565–1587. doi: 10.1007/s11430-012-4516-y

    朱日祥,周忠和,孟庆任. 2020. 华北克拉通破坏对地表地质与陆地生物的影响[J]. 科学通报,65:2954–2965.

    Zhu R X,Zhou Z H,Meng Q R. 2020. Destruction of the North China Craton and its influence on surface geology and terrestrial biotas[J]. Chinese Science Bulletin,65:2954–2965 (in Chinese).

    Ai S X,Zheng Y,Riaz M S,Song M Q,Zeng S J,Xie Z J. 2019. Seismic evidence on different rifting mechanisms in southern and northern segments of the Fenhe-Weihe rift zone[J]. J Geophys Res:Solid Earth,124(1):609–630. doi: 10.1029/2018JB016476

    An M J,Shi Y L. 2006. Lithospheric thickness of the Chinese continent[J]. Phys Earth Planet Inter,159(3/4):257–266.

    Bao X W,Song X D,Xu M J,Wang L S,Sun X X,Mi N,Yu D Y,Li H. 2013. Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications[J]. Earth Planet Sci Lett,369-370:129–137. doi: 10.1016/j.jpgl.2013.03.015

    Bird P. 2003. An updated digital model of plate boundaries[J]. Geochem Geophy Geosyst,4(3):1027.

    Cai Y,Wu J P,Rietbrock A,Wang W L,Fang L H,Yi S,Liu J. 2021. S wave velocity structure of the crust and upper mantle beneath Shanxi Rift,Central North China Craton and its tectonic implications[J]. Tectonics,40(4):e2020TC006239. doi: 10.1029/2020TC006239

    Carlson R W,Pearson D G,James D E. 2005. Physical,chemical,and chronological characteristics of continental mantle[J]. Rev Geophys,43(1):RG1001.

    Chen L. 2010. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications[J]. Lithos,120(1/2):96–115.

    Chen M,Niu F L,Liu Q Y,Tromp J,Zheng X F. 2015. Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia:1. Model construction and comparisons[J]. J Geophys Res:Solid Earth,120(3):1762–1786. doi: 10.1002/2014JB011638

    Cheng C,Chen L,Yao H J,Jiang M M,Wang B Y. 2013. Distinct variations of crustal shear wave velocity structure and radial anisotropy beneath the North China Craton and tectonic implications[J]. Gondwana Res,23(1):25–38. doi: 10.1016/j.gr.2012.02.014

    Cheng S H,Xiao X,Wu J P,Wang W L,Sun L,Wang X X,Wen L X. 2022. Crustal thickness and vP/vS variation beneath continental China revealed by receiver function analysis[J]. Geophys J Int,228(3):1731–1749.

    Dan W,Li X H,Wang Q,Wang X C,Wyman D A,Liu Y. 2016. Phanerozoic amalgamation of the Alxa Block and North China Craton:Evidence from Paleozoic granitoids,U-Pb geochronology and Sr-Nd-Pb-Hf-O isotope geochemistry[J]. Gondwana Res,32:105–121. doi: 10.1016/j.gr.2015.02.011

    Fan W M,Zhang H F,Baker J,Jarvis K E,Mason P R D,Menzies M A. 2000. On and off the North China Craton:Where is the Archaean keel?[J]. J Petrol,41(7):933–950. doi: 10.1093/petrology/41.7.933

    Feng J K,Yao H J,Chen L,Li C L. 2022. Ongoing lithospheric alteration of the North China Craton revealed by Surface-wave tomography and geodetic observations[J]. Geophys Res Lett,49(14):e2022GL099403. doi: 10.1029/2022GL099403

    Feng M,van der Lee S,An M J,Zhao Y. 2010. Lithospheric thickness,thinning,subduction,and interaction with the asthenosphere beneath China from the joint inversion of seismic S-wave train fits and Rayleigh-wave dispersion curves[J]. Lithos,120(1/2):116–130.

    Gee L S,Jordan T H. 1992. Generalized seismological data functionals[J]. Geophys J Int,111(2):363–390. doi: 10.1111/j.1365-246X.1992.tb00584.x

    Griffin W L,Zhang A D,O'Reilly S Y,Ryan C G. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton[C]//Mantle Dynamics and Plate Interactions in East Asia. Washington:American Geophysical Union:107−126.

    Guo Z,Afonso J C,Qashqai M T,Yang Y J,Chen Y J. 2016. Thermochemical structure of the North China Craton from multi-observable probabilistic inversion:Extent and causes of cratonic lithosphere modification[J]. Gondwana Res,37:252–265. doi: 10.1016/j.gr.2016.07.002

    He L J. 2015. Thermal regime of the North China Craton:Implications for craton destruction[J]. Earth-Sci Rev,140:14–26. doi: 10.1016/j.earscirev.2014.10.011

    Heidbach O,Rajabi M,Reiter K,Ziegler M. 2016. World stress map 2016. GFZ Data Service[DB/OL]. https://doi.org/10.5880./WSM.2016.001.

    Herrmann R B. 2013. Computer programs in seismology:An evolving tool for instruction and research[J]. Seismol Res Lett,84(6):1081–1088. doi: 10.1785/0220110096

    Huang J L,Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions[J]. J Geophys Res:Solid Earth,111(B9):B09305.

    Huang Z X,Su W,Peng Y J,Zheng Y J,Li H Y. 2003. Rayleigh wave tomography of China and adjacent regions[J]. J Geophys Res:Solid Earth,108(B2):2073.

    Huang Z X,Li H Y,Zheng Y J,Peng Y J. 2009. The lithosphere of North China Craton from surface wave tomography[J]. Earth Planet Sci Lett,288(1/2):164–173.

    Jiang M M,Ai Y S,Chen L,Yang Y J. 2013. Local modification of the lithosphere beneath the central and western North China Craton:3-D constraints from Rayleigh wave tomography[J]. Gondwana Res,24(3/4):849–864.

    Jin G,Gaherty J B. 2015. Surface wave phase-velocity tomography based on multichannel cross-correlation[J]. Geophys J Int,201(3):1383–1398. doi: 10.1093/gji/ggv079

    Kreemer C,Blewitt G,Klein E C. 2014. A geodetic plate motion and global strain rate model[J]. Geochem Geophy Geosyst,15(10):3849–3889. doi: 10.1002/2014GC005407

    Lei J S. 2012. Upper-mantle tomography and dynamics beneath the North China Craton[J]. J Geophys Res:Solid Earth,117(B6):B06313.

    Lei J S,Zhao D P,Xu X W,Du M F,Mi Q,Lu M W. 2020. P-wave upper-mantle tomography of the Tanlu fault zone in eastern China[J]. Phys Earth Planet Inter,299:106402. doi: 10.1016/j.pepi.2019.106402

    Li C,van der Hilst R D. 2010. Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography[J]. J Geophys Res:Solid Earth,115(B7):B07308.

    Li M K,Song X D,Li J T,Bao X W. 2022. Crust and upper mantle structure of East Asia from ambient noise and earthquake surface wave tomography[J]. Earthquake Science,35(2):71–92. doi: 10.1016/j.eqs.2022.05.004

    Li S L,Guo Z,Chen Y J,Yang Y J,Huang Q H. 2018. Lithospheric structure of the northern Ordos from ambient noise and teleseismic surface wave tomography[J]. J Geophys Res:Solid Earth,123(8):6940–6957. doi: 10.1029/2017JB015256

    Li Y H,Gao M T,Wu Q J. 2014. Crustal thickness map of the Chinese mainland from teleseismic receiver functions[J]. Tectonophysics,611:51–60. doi: 10.1016/j.tecto.2013.11.019

    Lin F C,Ritzwoller M H,Snieder R. 2009. Eikonal tomography:Surface wave tomography by phase front tracking across a regional broad-band seismic array[J]. Geophys J Int,177(3):1091–1110. doi: 10.1111/j.1365-246X.2009.04105.x

    Lin F C,Ritzwoller M H. 2011. Helmholtz surface wave tomography for isotropic and azimuthally anisotropic structure[J]. Geophys J Int,186(3):1104–1120. doi: 10.1111/j.1365-246X.2011.05070.x

    Liu J,Wu J P,Wang W L,Cai Y,Fang L H. 2021. Seismic anisotropy and implications for lithospheric deformation beneath the Ordos block and surrounding regions[J]. Geophys J Int,226(3):1885–1896. doi: 10.1093/gji/ggab154

    Liu J G,Cai R H,Pearson D G,Scott J M. 2019. Thinning and destruction of the lithospheric mantle root beneath the North China Craton:A review[J]. Earth-Sci Rev,196:102873. doi: 10.1016/j.earscirev.2019.05.017

    Ma J C,Tian Y,Zhao D P,Liu C,Liu T T. 2019. Mantle dynamics of western Pacific and east Asia:New insights from P wave anisotropic tomography[J]. Geochem Geophys Geosyst,20(7):3628–3658. doi: 10.1029/2019GC008373

    Menzies M A,Fan W M,Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere,Sino-Korean Craton,China[J]. Geol Soc,London,Spec Publ, 76 :71−81.

    Menzies M A,Xu Y G,Zhang H F,Fan W M. 2007. Integration of geology,geophysics and geochemistry:A key to understanding the North China Craton[J]. Lithos,96(1/2):1–21.

    Priestley K,McKenzie D. 2006. The thermal structure of the lithosphere from shear wave velocities[J]. Earth Planet Sci Lett,244(1/2):285–301.

    Shen W S,Ritzwoller M H,Kang D,Kim Y H,Lin F C,Ning J Y,Wang W T,Zheng Y,Zhou L Q. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophys J Int,206(2):954–979. doi: 10.1093/gji/ggw175

    Tang Y C,Chen Y J,Zhou S Y,Ning J Y,Ding Z F. 2013. Lithosphere structure and thickness beneath the North China Craton from joint inversion of ambient noise and surface wave tomography[J]. J Geophys Res:Solid Earth,118(5):2333–2346. doi: 10.1002/jgrb.50191

    Tao K,Grand S P,Niu F L. 2018. Seismic structure of the upper mantle beneath eastern Asia from full waveform seismic tomography[J]. Geochem Geophys Geosyst,19(8):2732–2763. doi: 10.1029/2018GC007460

    Tian Y,Zhao D P,Sun R M,Teng J W. 2009. Seismic imaging of the crust and upper mantle beneath the North China Craton[J]. Phys Earth Planet Inter,172(3/4):169–182.

    Wang C Y,Sandvol E,Zhu L,Lou H,Yao Z X,Luo X H. 2014. Lateral variation of crustal structure in the Ordos block and surrounding regions,North China,and its tectonic implications[J]. Earth Planet Sci Lett,387:198–211. doi: 10.1016/j.jpgl.2013.11.033

    Wang C Y,Sandvol E,Lou H,Wang X C,Chen Y S. 2017. Evidence for a crustal root beneath the Paleoproterozoic collision zone in the northern Ordos block,North China[J]. Precambrian Res,301:124–133. doi: 10.1016/j.precamres.2017.09.009

    Wang J,Wu H H,Zhao D P. 2014. P wave radial anisotropy tomography of the upper mantle beneath the North China Craton[J]. Geochem Geophys Geosyst,15(6):2195–2210. doi: 10.1002/2014GC005279

    Wang M,Shen Z K. 2020. Present-day crustal deformation of continental china derived from GPS and its tectonic implications[J]. J Geophys Res:Solid Earth,125(2):e2019JB018774. doi: 10.1029/2019JB018774

    Wang W L,Wu J P,Fang L H,Lai G J,Cai Y. 2017. Sedimentary and crustal thicknesses and Poisson’s ratios for the NE Tibetan Plateau and its adjacent regions based on dense seismic arrays[J]. Earth Planet Sci Lett,462:76–85. doi: 10.1016/j.jpgl.2016.12.040

    Wang Z S,Kusky T M,Capitanio F A. 2016. Lithosphere thinning induced by slab penetration into a hydrous mantle transition zone[J]. Geophys Res Lett,43(22):11567–11577.

    Wei W,Xu J D,Zhao D P,Shi Y L. 2012. East Asia mantle tomography:New insight into plate subduction and intraplate volcanism[J]. J Asian Earth Sci,60:88–103. doi: 10.1016/j.jseaes.2012.08.001

    Wu J P,Liu Y N,Zhong S J,Wang W L,Cai Y,Wang W,Liu J. 2022. Lithospheric structure beneath Ordos Block and surrounding areas from joint inversion of receiver function and surface wave dispersion[J]. Science China Earth Science,65(7):1399–1413. doi: 10.1007/s11430-021-9895-0

    Xu X M,Li G L,Ding Z F,Huang X. 2022. S-wave velocity structure of the crust and upper mantle beneath the North China Craton determined by joint inversion of Rayleigh-wave phase velocity and Z/H ratio[J]. Seismol Res Lett,93(4):2176–2188. doi: 10.1785/0220220014

    Xu Y G. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China:Evidence,timing and mechanism[J]. Phys Chem Earth Part A,26(9/10):747–757.

    Xu Y G,Ma J L,Frey F A,Feigenson M D,Liu J F. 2005. Role of lithosphere–asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong,western North China Craton[J]. Chem Geol,224(4):247–271. doi: 10.1016/j.chemgeo.2005.08.004

    Xu Y G. 2007. Diachronous lithospheric thinning of the North China Craton and formation of the Daxin'anling–Taihangshan gravity lineament[J]. Lithos,96(1/2):281–298.

    Yao Z X,Eric S,Wang C Y,Ding Z F,Chen Y S. 2020. Asthenospheric upwelling beneath northeastern margin of Ordos Block:Constraints from Rayleigh surface-wave tomography[J]. Tectonophysics,790:228548. doi: 10.1016/j.tecto.2020.228548

    Zhang J,Li J Y,Xiao W X,Wang Y N,Qi W H. 2013. Kinematics and geochronology of multistage ductile deformation along the eastern Alxa block,NW China:New constraints on the relationship between the North China plate and the Alxa block[J]. J Struct Geol,57:38–57. doi: 10.1016/j.jsg.2013.10.002

    Zhang P,Yao H J,Chen L,Fang L H,Wu Y,Feng J K. 2019. Moho depth variations from receiver function imaging in the northeastern North China Craton and its tectonic implications[J]. J Geophys Res:Solid Earth,124(2):1852–1870. doi: 10.1029/2018JB016122

    Zhang Y G,Zheng W J,Wang Y J,Zhang D L,Tian Y T,Wang M,Zhang Z Q,Zhang P Z. 2018. Contemporary deformation of the North China plain from global positioning system data[J]. Geophys Res Lett,45(4):1851–1859. doi: 10.1002/2017GL076599

    Zhang Y Y,Chen L,Ai Y S,Jiang M M. 2019. Lithospheric structure beneath the central and western North China Craton and adjacent regions from S-receiver function imaging[J]. Geophys J Int,219(1):619–632. doi: 10.1093/gji/ggz322

    Zhao G C. 2001. Palaeoproterozoic assembly of the North China Craton[J]. Geol Mag,138(1):87–91. doi: 10.1017/S0016756801005040

    Zhao G C,Cawood P A,Li S Z,Wilde S A,Sun M,Zhang J,He Y H,Yin C Q. 2012. Amalgamation of the North China Craton:Key issues and discussion[J]. Precambrian Res,222-223:55–76. doi: 10.1016/j.precamres.2012.09.016

    Zhao L,Allen R M,Zheng T Y,Zhu R X. 2012. High-resolution body wave tomography models of the upper mantle beneath eastern China and the adjacent areas[J]. Geochem Geophys Geosyst,13(6):Q06007.

    Zheng T Y,Zhao L,Xu W W,Zhu R X. 2008. Insight into modification of North China Craton from seismological study in the Shandong Province[J]. Geophys Res Lett,35(22):L22305.

    Zheng T Y,Zhao L,Zhu R X. 2009. New evidence from seismic imaging for subduction during assembly of the North China Craton[J]. Geology,37(5):395–398. doi: 10.1130/G25600A.1

    Zheng T Y,Zhu R X,Zhao L,Ai Y S. 2012. Intralithospheric mantle structures recorded continental subduction[J]. J Geophys Res:Solid Earth,117(B3):B03308.

    Zheng Y,Shen W S,Zhou L Q,Yang Y J,Xie Z J,Ritzwoller M H. 2011. Crust and uppermost mantle beneath the North China Craton,northeastern China,and the sea of Japan from ambient noise tomography[J]. J Geophys Res:Solid Earth,116(B12):B12312. doi: 10.1029/2011JB008637

    Zhou P X,Chevrot S,Lehujeur M,Xia S H,Yu C Q. 2022. Eikonal surface wave tomography of central and eastern China[J]. Geophys J Int,231(3):1865–1879. doi: 10.1093/gji/ggac296

  • 期刊类型引用(14)

    1. 洪梓铭. 电力巡检的移动作业无人机倾斜影像三维采集模型. 电子设计工程. 2023(06): 149-152+157 . 百度学术
    2. 肖本夫,张露露,陈波,毛利,孟凡馨,宴金旭. 四川泸县M_s6.0地震极震区无人机影像震害分析. 震灾防御技术. 2023(02): 301-308 . 百度学术
    3. 罗嘉琦,帅向华,李继赓. 基于深度学习的倾斜摄影建筑物表面损毁信息提取. 中国地震. 2023(02): 271-281 . 百度学术
    4. 黄永,于建琦,林旭川,钟江荣,李惠. 基于深度学习的建筑破坏状态智能评估研究. 自然灾害学报. 2023(04): 148-158 . 百度学术
    5. 蔡天池,刘春,周骁腾,许泽然,陈晨. 基于无人机的建筑立面裂缝检测. 工程勘察. 2022(04): 45-51 . 百度学术
    6. 李忠武,陈桂华. 基于无人机倾斜航空摄影三维点云测量同震倾滑变形研究——以2021年玛多M_S7.4地震地表破裂为例. 震灾防御技术. 2022(01): 46-55 . 百度学术
    7. 帅向华,荆帅军,郑向向,刘钦. 多尺度分割和深度学习相结合的倾斜摄影三维影像建筑物震害信息提取. 地震学报. 2022(05): 881-890 . 本站查看
    8. 彭懋磊,郝宁,李垠,张萍. 基于0.2m分辨率遥感影像的震害信息提取仿真. 计算机仿真. 2022(10): 209-213 . 百度学术
    9. 李金香,谭明,孙甲宁,吴国栋,赵江涛,李波. 新疆拜城M_S5.4地震无人机遥感快速灾情获取与分析. 震灾防御技术. 2022(04): 784-794 . 百度学术
    10. 刘超,雷启云,余思汗,杨顺,王银. 基于无人机摄影测量技术的地震地表破裂带定量参数提取——以1709年中卫南M7(1/2)地震为例. 地震学报. 2021(01): 113-123+136 . 本站查看
    11. 沈小娜. 基于BIM模型的室内环境布局系统设计. 现代电子技术. 2021(16): 129-132 . 百度学术
    12. 张方浩,杜浩国,张原硕,张建国,卢永坤,曹彦波. 基于倾斜摄影的2021年云南漾濞M_S6.4地震典型震害调查分析. 地震研究. 2021(03): 481-489 . 百度学术
    13. 张志文,任俊杰,章小龙. 高精度无人机航测在2021年玛多7.4级地震地表破裂精细研究中的应用. 震灾防御技术. 2021(03): 437-447 . 百度学术
    14. 王忠丰. 基于自适应末端滑膜控制的无人机倾斜摄影测量技术. 计算机测量与控制. 2020(08): 88-92 . 百度学术

    其他类型引用(12)

图(10)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  89
  • PDF下载量:  147
  • 被引次数: 26
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-10-06
  • 网络出版日期:  2023-10-17
  • 刊出日期:  2024-07-14

目录

/

返回文章
返回