Lin Binhua, Jin Xing, Li Jun, Cai Huiteng, Liao Shirong, Chen Huifang. 2017: Station network ambient noise level evaluation and its influence on air gun source excitation effect. Acta Seismologica Sinica, 39(3): 330-342. DOI: 10.11939/jass.2017.03.003
Citation: Lin Binhua, Jin Xing, Li Jun, Cai Huiteng, Liao Shirong, Chen Huifang. 2017: Station network ambient noise level evaluation and its influence on air gun source excitation effect. Acta Seismologica Sinica, 39(3): 330-342. DOI: 10.11939/jass.2017.03.003

Station network ambient noise level evaluation and its influence on air gun source excitation effect

More Information
  • Received Date: June 30, 2016
  • Revised Date: October 24, 2016
  • Published Date: April 30, 2017
  • In order to study the influence of background noise on excited effect of air gun active source experiment in the Yangtze River, we collected and analyzed ambient noise data from 240 stations with 72 hours before air gun excited, and superposition results of 20 fixed points excitation. After removing the abnormal stations, ambient noise level of the seismic network was divided into three grades including high, middle and low based on international standard for the assessment, which were used to analyze the relationship between signal to noise ratio (SNR) of air gun waveforms and station ambient noise. The results showed that: ① the station receiving ability is closely related to ambient noise level; ② in a certain range, SNR of air gun signal is affected more by ambient noise than by the distance attenuation; ③ the field conditions of the different excited points are basically similar in Ma'anshan to Anqing river basin of the Yangtze River; ④ with the increasing of air gun signal superposition times, SNR of low noise station is growing faster than that of high noise station, that is, the high noise station needs much more superposition times to get the same result.
  • 蔡辉腾, 金星, 王善雄, 李培, 陈伟. 2016.宁化-大田-惠安地壳构造与速度结构特征[J].地球物理学报, 59(1): 157-168. doi: 10.6038/cjg20160113.

    Cai H T, Jin X, Wang S X, Li P, Chen W. 2016. The crust structure and velocity structure characteristics beneath Ninghua-Datian-Hui'an[J]. Chinese Journal of Geophysics, 59(1): 157-168. doi: 10.6038/cjg20160113 (in Chinese).
    陈颙, 王宝善, 葛洪魁, 徐平, 张尉. 2007.建立地震发射台的建议[J].地球科学进展, 22(5): 441-446. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200705000.htm

    Chen Y, Wang B S, Ge H K, Xu P, Zhang W. 2007. Proposed of transmitted seismic stations[J]. Advances in Earth Science, 22(5): 441-446 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200705000.htm
    葛洪魁, 陈海潮, 欧阳飚, 杨微, 张梅, 袁松湧, 王宝善. 2013.流动地震观测背景噪声的台基响应[J].地球物理学报, 56(3): 857-868. doi: 10.6038/cjg20130315.

    Ge H K, Chen H C, Ouyang B, Yang W, Zhang M, Yuan S Y, Wang B S. 2013. Transportable seismometer response to seismic noise in vault[J]. Chinese Journal of Geophysics, 56(3): 857-868. doi: 10.6038/cjg20130315 (in Chinese).
    李军. 2006. 福建地区脉动资料的处理与分析[D]. 哈尔滨: 中国地震局工程力学研究所: 5-22. http://cdmd.cnki.com.cn/Article/CDMD-85406-2007128278.htm

    Li J. 2006. The Processes and Analysis of the Microseisms Records in Fujian Region[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 5-22 (in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-85406-2007128278.htm
    廖诗荣, 陈绯雯. 2008.应用概率密度函数方法自动处理地震台站勘选测试数据[J].华南地震, 28(4): 82-92. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNDI200804009.htm

    Liao S R, Chen F W. 2008. Automated seismic noise processing for seismic site selection using probability density functions method[J]. South China Journal of Seismology, 28(4): 82-92 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNDI200804009.htm
    林彬华, 金星, 廖诗荣, 李军, 黄玲珠, 朱耿青. 2015.地震噪声异常实时监测[J].中国地震, 31(2): 281-289. http://adsabs.harvard.edu/abs/2009JVGR..184..164D

    Lin B H, Jin X, Liao S R, Li J, Huang L Z, Zhu G Q. 2015. Real-time monitoring of abnormal seismic noise[J]. Earthquake Research in China, 31(2): 281-289 (in Chinese). http://adsabs.harvard.edu/abs/2009JVGR..184..164D
    刘旭宙, 沈旭章, 李秋生, 张元生, 秦满忠, 叶卓. 2014.青藏高原东北缘宽频带地震台阵远震记录波形及背景噪声分析[J].地球学报, 35(6): 759-768. doi: 10.3975/cagsb.2014.06.12

    Liu X Z, Shen X Z, Li Q S, Zhang Y S, Qin M Z, Ye Z. 2014. An analysis of the tele-seismic waveforms and ambient noise of temporary broadband seismic array on the northeastern margin of the Tibetan Plateau[J]. Acta Geoscientia Sinica, 35(6): 759-768 (in Chinese). doi: 10.3975/cagsb.2014.06.12
    鲁来玉, 何正勤, 丁志峰, 姚志祥. 2009.华北科学探测台阵背景噪声特征分析[J].地球物理学报, 52(10): 2566-2572. doi: 10.3969/j.issn.0001-5733.2009.10.015.

    Lu L Y, He Z Q, Ding Z F, Yao Z X. 2009. Investigation of ambient noise source in North China array[J]. Chinese Journal of Geophysics, 52(10): 2566-2572. doi: 10.3969/j.issn.0001-5733.2009.10.015 (in Chinese).
    吴建平, 欧阳飚, 王未来, 姚志祥, 袁松涌. 2012.华北地区地震环境噪声特征研究[J].地震学报, 34(6): 818-829. https://www.researchgate.net/publication/286867222_Ambient_noise_level_of_North_China_from_temporary_seismic_array

    Wu J P, Ouyang B, Wang W L, Yao Z X, Yuan S Y. 2012. Ambient noise level of North China from temporary seismic array[J]. Acta Seismologica Sinica, 34(6): 818-829 (in Chinese). https://www.researchgate.net/publication/286867222_Ambient_noise_level_of_North_China_from_temporary_seismic_array
    张尉. 2008. 利用小当量人工震源进行区域性深部探测的试验研究[D]. 杭州: 浙江大学理学院地球科学系: 92-145. http://d.wanfangdata.com.cn/Thesis/D454938

    Zhang W. 2008. The Experiments of Using Small Artificial Seismic Sources to Explore Regional Deep Structure of the Earth[D]. Hangzhou: Department of Earth Science, Zhejiang University: 92-145 (in Chinese). http://d.wanfangdata.com.cn/Thesis/D454938
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2004. GB/T 19531. 1-2004地震台站观测环境技术要求第1部分: 测震[S]. 北京: 中国标准出版社: 15-27.

    State Administration for Quality Supervision and Inspection and Quarantine of the People's Republic of China, Standardi-zation Administration of the People's Republic of China. 2004. GB/T 19531.1-2004 Technical Requirement for Observational Environment of Seismic Stations Part 1: Seismometry[S]. Beijing: China Standards Press: 15-27 (in Chinese).
    Bormann P. 2002. New Manual of Seismological Observatory Practice (NMSOP)[M]. Potsdam: GeoForschungsZentrum: 1-36.
    McNamara D E, Buland R P. 2004. Ambient noise levels in the continental United States[J]. Bull Seismol Soc Am, 94(4): 1517-1527. doi: 10.1785/012003001
    McNamara D E, Boaz R I. 2006. Seismic Noise Analysis System Using Power Spectral Density Probability Density Functions: A Stand-Alone Software Package. USGS Open-File Report 2005-1438[R]. Reston, Virginia: U.S. Geological Survey: 1438-1452.
    McNamara D E, Hutt C R, Gee L S, Benz H M, Buland R P. 2009. A method to establish seismic noise baselines for automated station assessment[J]. Seismol Res Lett, 80(4): 628-637. doi: 10.1785/gssrl.80.4.628
    Peterson J. 1993. Observations and Modeling of Seismic Background Noise. Open-File Report 93-322[R]. Albuquerque, New Mexico: U.S. Department of Interior Geological Survey, 32(7): 93-322.
    Ringler A T, Gee L S, Hutt C R, McNamara D E. 2010. Temporal variations in global seismic station ambient noise power levels[J]. Seismol Res Lett, 81(4): 605-613. doi: 10.1785/gssrl.81.4.605
    Sleeman R, Vila J. 2007. Towards an automated quality control manager for the virtual European broadband seismograph network (VEBSN)[J]. ORFEUS Newsl, 7(1): 354-366. doi: 10.1007/978-94-007-0152-6_13/fulltext.html
  • Cited by

    Periodical cited type(4)

    1. 姚姜森,王珏,李圣,刘昌伟,宋晓春,陆斌斌. 昆明盆地常规土类剪切波速与埋深的关系研究. 华南地震. 2024(03): 40-50 .
    2. 杨洋,孙锐. 基于剪切波速的液化可能性等级评估表法. 岩土力学. 2023(S1): 634-644 .
    3. 宋健,师黎静,党鹏飞,李昕蕾. 哈尔滨市剪切波速与埋深相关性分析. 建筑结构. 2020(S1): 1088-1092 .
    4. 闫振军,吕悦军,黄雅虹,方怡. 华北地区剪切波速与深度之间统计关系的通用模型特征研究. 震灾防御技术. 2019(02): 304-313 .

    Other cited types(4)

Catalog

    Article views (960) PDF downloads (26) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return