Yang Shangbei, Bai Chaoying, He Leiyu. 2016: Comparison of seismic wavefield simulation between the curvilinear-grid finite difference method and ray method in undulated layered medium. Acta Seismologica Sinica, 38(6): 854-868. DOI: 10.11939/jass.2016.06.005
Citation: Yang Shangbei, Bai Chaoying, He Leiyu. 2016: Comparison of seismic wavefield simulation between the curvilinear-grid finite difference method and ray method in undulated layered medium. Acta Seismologica Sinica, 38(6): 854-868. DOI: 10.11939/jass.2016.06.005

Comparison of seismic wavefield simulation between the curvilinear-grid finite difference method and ray method in undulated layered medium

More Information
  • Received Date: March 25, 2016
  • Revised Date: May 22, 2016
  • Published Date: October 31, 2016
  • Commonly it is not possible to verify and test the accuracy and validity of the seismic wavefield modeling method, especially when the model surface (or subsurface) is undulated. For this reason, this paper tries an alternative way to mutually verify and test the computational accuracy and the solution correctness of both the ray theory (the multistage triangular shortest-path method) and the wave-equation simulation method (the curvilinear-grid finite difference method of the DRP/opt MacCormack format) in layered isotropic medium. Through the analysis and comparison of wave field snapshot, common source gather profile and synthetic seismogram, it is not only able to verify the accuracy and correctness of each of the methods at least for kinematic features, but also to thoroughly understand the kinematic and dynamic features of the wave propagation in isotropic media. The results show that the curvilinear-grid finite difference method is able to yield the correct results even for complex isotropic media; the multistage triangular shortest-path method is capable of predicting similar kinematic features as the wave-equation simulation method does, which can be used to mutually test each other for methodology accuracy and solution correctness. In addition, with the aid of the ray tracing results, it is easy to identify the multi-phases (or multiples) in the wave field snapshot, common source point gather seismic section and synthetic seismogram predicted by the wave-equation simulation method, which is a key issue for later seismic application.
  • 黄国娇. 2014.各向同性/各向异性介质中多震相走时同时反演方法技术研究[D].西安:长安大学地质工程与测绘学院: 16-19. http://cdmd.cnki.com.cn/Article/CDMD-10710-1014070093.htm

    Huang G J. 2014. Simultaneous Traveltime Inversion in Complex Isotropic/Anisotropic Medium Using Multi-Phase Arrivals[D]. Xi'an: College of Geological Engineering and Surveying, Chang'an University: 16-19 (in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10710-1014070093.htm
    黄国娇, 白超英, 钱卫. 2015.球坐标系下多震相走时三参数同时反演成像[J].地球物理学报, 58 (10): 3627-3638. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201510016.htm

    Huang G J, Bai C Y, Qian W. 2015. Simultaneous inversion of three model parameters with multiple phases of arrival times in spherical coordinates[J]. Chinese Journal of Geophysics, 58 (10): 3627-3638 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201510016.htm
    蒋丽丽, 孙建国. 2008.基于Poisson方程的曲网格生成技术[J].世界地质, 27 (3): 298-305. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ200803012.htm

    Jiang L L, Sun J G. 2008. Source terms of elliptic system in grid generation[J]. Global Geology, 27 (3): 298-305 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ200803012.htm
    李晓玲, 白超英, 胡光义. 2013.起伏层状TI介质中多次波射线追踪[J].石油地球物理勘探, 48 (6): 924-931. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201306011.htm

    Li X L, Bai C Y, Hu G Y. 2013. Multiple ray tracing in an undulated layered TI media[J]. Oil Geophysical Prospect-ing, 48 (6): 924-931 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201306011.htm
    王涛, 张延腾, 白超英. 2014. 2D各向异性TTI介质中地震波场的射线法和波动方程数值模拟对比研究[J].地球物理学进展, 29 (2): 580-587. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201402014.htm

    Wang T, Zhang Y T, Bai C Y. 2014. Seismic wavefield propagation on 2D anisotropic TTI media through ray theory and wave-equation simulation and comparison[J]. Progress in Geophysics, 29 (2): 580-587 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201402014.htm
    王涛, 白超英, 杨尚倍. 2016.各向同性介质中射线理论与有限差分地震波场模拟方法比较研究[J].地球物理学进展, 31 (2): 606-613. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201602013.htm

    Wang T, Bai C Y, Yang S B. 2016. Comparison of ray theory and FDM for simulating seismic wavefield in isotropic media[J]. Progress in Geophysics, 31 (2): 606-613 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201602013.htm
    王童奎, 张美根, 李小凡, 李瑞华, 龙桂华. 2007. PS转换波界面二次源法射线追踪[J].地球物理学进展, 22 (1): 165-170. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200701022.htm

    Wang T K, Zhang M G, Li X F, Li R H, Long G H. 2007. Interface points as secondary sources method raytracing PS converted waves[J]. Progress in Geophysics, 22 (1): 165-170 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200701022.htm
    赵爱华, 张中杰. 2004.三维复杂介质中转换波走时快速计算[J].地球物理学报, 47 (4): 702-707. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200404023.htm

    Zhao A H, Zhang Z J. 2004. Fast calculation of converted wave traveltime in 3-D complex media[J]. Chinese Journal of Geophysics, 47 (4): 702-707 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200404023.htm
    赵爱华, 丁志峰. 2005.宽角反射地震波走时模拟的双重网格法[J].地球物理学报, 48 (5): 1141-1147. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200505022.htm

    Zhao A H, Ding Z F. 2005. A double-grid algorithm for calculating traveltimes of wide-angle reflection waves[J]. Chinese Journal of Geophysics, 48 (5): 1141-1147 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200505022.htm
    朱多林, 白超英. 2011.基于波动方程理论的地震波场数值模拟方法综述[J].地球物理学进展, 26 (5): 1588-1599. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200505022.htm

    Zhu D L, Bai C Y. 2011. Review on the seismic wavefield forward modelling[J]. Progress in Geophysics, 26 (5): 1588-1599 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200505022.htm
    Bai C Y, Li X L, Wang Q L, Peng J B. 2012. Multiple arrival tracking within irregular triangular or tetrahedral cell model[J]. J Geophys Eng, 9 (1): 29-38. doi: 10.1088/1742-2132/9/1/004
    Carcione J M, Herman G C, Kroode A P E. 2002. Seismic modeling[J]. Geophysics, 67 (4): 1304-1325. doi: 10.1190/1.1500393
    Červený V. 2001. Seismic Ray Theory[M]. Cambridge: Cambridge University Press: 117-118.
    Crampin S. 1984. Effective anisotropic elastic constants for wave propagation through cracked solids[J]. Geophys J Int, 76 (1): 135-145. doi: 10.1111/j.1365-246X.1984.tb05029.x
    Hixon R. 1998. Evaluation of a high-accuracy MacCormack-type scheme using benchmark problems[J]. J Comp Acoust, 6 (3): 291-305. doi: 10.1142/S0218396X9800020X
    Hixon R, Turkel E. 2000. Compact implicit MacCormack-type schemes with high accuracy[J]. J Comp Phys, 158 (1): 51-70. doi: 10.1006/jcph.1999.6406
    Igel H, Mora P, Riollet B. 1995. Anisotropic wave propagation through finite-difference grids[J]. Geophysics, 60 (4): 1203-1216. doi: 10.1190/1.1443849
    Komatitsch D, Barnes C, Tromp J. 2000. Simulation of anisotropic wave propagation based upon a spectral element method[J]. Geophysics, 65 (4): 1251-1260. doi: 10.1190/1.1444816
    Moser T J. 1991. Shortest path calculation of seismic rays[J]. Geophysics, 56 (1): 59-67. doi: 10.1190/1.1442958
    Tam C K W, Webb J C. 1993. Dispersion-relation-preserving finite difference schemes for computational acoustics[J]. J Comp Phys, 107 (2): 262-281. doi: 10.1006/jcph.1993.1142
    Zhang W, Chen X F. 2006. Traction image method for irregular free surface boundaries in finite difference seismic wave simulation[J]. Geophys J Int, 167 (1): 337-353. doi: 10.1111/gji.2006.167.issue-1
    Zhang W, Zhang Z G, Chen X F. 2012. Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids[J]. Geophys J Int, 190 (1): 358-378. doi: 10.1111/gji.2012.190.issue-1
    Zhou H, Chen X F. 2008. Localized boundary integral equation-discrete wave number method for simulating wave propagation in irregular multiple layers, part I: Theory[J]. Bull Seismol Soc Am, 99 (3): 1984-1994.
    Zhu J L, Dorman J. 2000. Two-dimensional, three-component wave propagation in a transversely isotropic medium with arbitrary orientation-finite-element modeling[J]. Geophysics, 65 (3): 934-942. doi: 10.1190/1.1444789
  • Cited by

    Periodical cited type(2)

    1. 鲁雁翔,白超英. 起伏层状介质中曲线交错网格有限差分弹性波逆时偏移成像. 地球物理学进展. 2019(02): 605-614 .
    2. 何雷宇,白超英. 井间各向异性多波走时联合层析成像:以波场模拟拾取走时为例. 地球物理学进展. 2018(05): 1796-1806 .

    Other cited types(7)

Catalog

    Article views (675) PDF downloads (21) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return