Liu Zhongxian, Shang Ce, Wang Xiaoyan, Wang Dong. 2017: Simulation on the amplification effect of a three-dimensional alluvial basin on the earthquake ground motion using the indirect boundary element method. Acta Seismologica Sinica, 39(1): 111-131. DOI: 10.11939/jass.2017.01.010
Citation: Liu Zhongxian, Shang Ce, Wang Xiaoyan, Wang Dong. 2017: Simulation on the amplification effect of a three-dimensional alluvial basin on the earthquake ground motion using the indirect boundary element method. Acta Seismologica Sinica, 39(1): 111-131. DOI: 10.11939/jass.2017.01.010

Simulation on the amplification effect of a three-dimensional alluvial basin on the earthquake ground motion using the indirect boundary element method

More Information
  • Received Date: May 04, 2016
  • Revised Date: July 06, 2016
  • Published Date: December 31, 2016
  • Based on the indirect boundary element method (IBEM) with high precision, this paper solves the seismic response of a three-dimensional sedimentary basins both in the frequency domain and time domain. Taking the scattering of plane P and SV waves around an semi-ellipsoidal three-dimensional sedimentary basin as an example, the amplification effects of incident angle, wave type, incident frequency, length-width ratio and depth-width ratio of the basin on the ground motion are investigated in detail. The numerical results show that the basin shape has a significant impact on the amplification effect of seismic waves and the spatial distribution characteristics, and the detail effect also strongly depends on the frequency band of incident wave. In particular, as the basin depth increases, edge-generated surface waves become dominant, significant ground motion amplification effect can be observed for a wider band, and amplification area is mainly located in the middle of basin. The seismic wave focusing effect within the circular basin seems most significant, while that within long-narrow basin seems relatively weak, and multiple wave-focused areas appear within the basin for incident high-frequency waves. The amplification mechanism of basin effect on ground motion is different for different types of waves: for incident P waves, significant amplification of vertical displacement in the middle of basin can be mainly attributed to the focusing of surface waves generated from the basin edge; as for SV wave incidence, the surface wave focusing effect is relatively weak, but when the basin is deep, constructive interference of transmitted body waves and edge surface waves tend to result in a considerable amplification effect. For the wave-velocity ratio 1/2 between the alluvial basin and the bedrock, amplification factors of P and SV waves can reach up to 25, 15, respectively in frequency domain, and to 4.0, 3.7, respectively in time domain (Ricker waves). As for the low frequency waves, the displacement amplitude decreases from the basin center to basin edge, and the amplification is not obvious for the shallow basin. In addition, the angle of incidence also has significant impact on the amplitude and spatial distribution characteristics of ground motion.
  • 陈学良, 高孟潭, 李铁飞. 2011. Rayleigh面波作用下盆地场地响应特性研究[J]. 土木建筑与环境工程, 33(S2): 29-33. http://www.cnki.com.cn/Article/CJFDTOTAL-JIAN2011S2008.htm
    Chen X L, Gao M T, Li T F. 2011. Study on response characteristics of basin site under the action of Rayleigh surface wave[J]. Journal of Civil, Architectural & Environmental Engineering, 33(S2): 29-33 (in Chinese).
    高孟潭, 俞言祥, 张晓梅, 吴健, 胡平, 丁彦慧. 2002. 北京地区地震动的三维有限差分模拟[J]. 中国地震, 18(4): 356-364. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD200204004.htm
    Gao M T, Yu Y X, Zhang X M, Wu J, Hu P, Ding Y H. 2002. Three-dimensional finite-difference simulations of ground motions in the Beijing area[J]. Earthquake Research in China, 18(4): 356-364 (in Chinese).
    景立平, 卓旭炀, 王祥建. 2005. 复杂场地对地震波传播的影响[J]. 地震工程与工程振动, 25(6): 16-23. http://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200506003.htm
    李铁飞, 陈学良, 高孟潭. 2013. 盆地场地效应的三维数值模拟研究进展及沉积环境对盆地场地的影响[J]. 世界地震工程, 29(3): 128-138. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201303020.htm
    梁建文, 张郁山, 顾晓鲁. 2003. 圆弧形层状凹陷地形对平面SH波的散射[J]. 振动工程学报, 16(2): 158-165. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC200302005.htm
    梁建文, 巴振宁. 2007. 弹性层状半空间中沉积谷地对入射平面SH波的放大作用[J]. 地震工程与工程振动, 27(3): 1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200703000.htm
    Liang J W, Ba Z N. 2007. Surface motion of an alluvial valley in layered half-space for incident plane SH waves[J]. Journal of Earthquake Engineering and Engineering Vibration, 27(3): 1-9 (in Chinese).
    刘启方, 李雪强, 孙平善. 2013a. 施甸盆地三维速度结构模型研究[J]. 地震工程与工程振动, 33(3): 88-94. http://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201303014.htm
    刘启方, 于彦彦, 章旭斌. 2013b. 施甸盆地三维地震动研究[J]. 地震工程与工程振动, 33(4): 54-60. http://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201304007.htm
    王海云. 2011. 渭河盆地中土层场地对地震动的放大作用[J]. 地球物理学报, 54(1): 137-150. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201101014.htm
    Wang H Y. 2011. Amplification effects of soil sites on ground motion in the Weihe basin[J]. Chinese Journal of Geophysics, 54(1): 137-150 (in Chinese). http://cn.bing.com/academic/profile?id=d2244bd52a56ea57277f5913951321cf&encoded=0&v=paper_preview&mkt=zh-cn
    王建龙, 陈学良, 高孟潭, 李宗超, 鄢兆伦, 李铁飞. 2014. 地震动峰值放大与盆地深度关系的初步数值模拟[J]. 地震工程与工程振动, 34(S): 167-172. http://www.cnki.com.cn/Article/CJFDTOTAL-DGGC2014S1026.htm
    张冬丽, 徐锡伟, 赵伯明, 陈桂华, 解廷伟. 2007. 强地面运动数值模拟中三维物理模型的建立方法: 以昆明盆地为例[J]. 地震学报, 29(2): 187-196. http://www.dzxb.org/Magazine/Show?id=26410
    Zhang D L, Xu X W, Zhao B M, Chen G H, Xie T W. 2007. 3-D physical model in strong ground motion numerical simulation: A case study of Kunming basin[J]. Acta Seismologica Sinica, 29(2): 187-196 (in Chinese).
    赵成刚, 韩铮. 2007. 半球形饱和土沉积谷场地对入射平面Rayleigh波的三维散射问题的解析解[J]. 地球物理学报, 50(3): 905-914. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200703031.htm
    Anderson J G, Bodin P, Brune J N, Prince J, Singh S K, Quaas R, Onate M. 1986. Strong ground motion from the Michoacan, Mexico, earthquake[J]. Science, 233(4768): 1043-1049. doi: 10.1126/science.233.4768.1043
    Bouchon M. 1973. Effect of topography on surface motion[J]. Bull Seismol Soc Am, 63(2): 615-632. http://cn.bing.com/academic/profile?id=d9373c9a23dd7d71558faeb34b765631&encoded=0&v=paper_preview&mkt=zh-cn
    Chaillat S, Bonnet M, Semblat J F. 2009. A new fast multi-domain BEM to model seismic wave propagation and amplification in 3-D geological structures[J]. Geophys J Int, 177(2): 509-531. doi: 10.1111/gji.2009.177.issue-2
    Chen G X, Jin D D, Zhu J, Shi J, Li X J. 2015. Nonlinear analysis on seismic site response of Fuzhou basin, China[J]. Bull Seismol Soc Am, 105(2A): 928-949. doi: 10.1785/0120140085
    Kamalian M, Gatmiri B, Sohrabi-Bidar A, Khalaj A. 2007. Amplification pattern of 2D semi-sine-shaped valleys subjected to vertically propagating incident waves[J]. Int J Numer Meth Biomed Eng, 23(9): 871-887. http://cn.bing.com/academic/profile?id=073be94e87d5dd28a86116ee3fe4f32f&encoded=0&v=paper_preview&mkt=zh-cn
    Kawase H, Aki K. 1989. A study on the response of a soft basin for incident S, P, and Rayleigh waves with special reference to the long duration observed in Mexico city[J]. Bull Seismol Soc Am, 79(5): 1361-1382. http://cn.bing.com/academic/profile?id=6189dfc639602d642c86762a026f9059&encoded=0&v=paper_preview&mkt=zh-cn
    Lee S J, Chen H W, Liu Q, Komatitsch D, Huang B S, Tromp J. 2008. Three-dimensional simulations of seismic wave propagation in the Taipei basin with realistic topography based upon the spectral element method[J]. Bull Seismol Soc Am, 98(1): 253-264. doi: 10.1785/0120070033
    Lee V W. 1984. Three-dimensional diffraction of plane P, SV & SH waves by a hemispherical alluvial valley[J]. Soil Dyn Earthquake Eng, 3(3): 133-144. doi: 10.1016/0261-7277(84)90043-3
    Luzón F, Sánchez-Sesma F J, Pérez-Ruiz J A, Ramírez-Guzmán L, Pech A. 2009. In-plane seismic response of inhomogeneous alluvial valleys with vertical gradients of velocities and constant Poisson ratio[J]. Soil Dyn Earthquake Eng, 29(6): 994-1004. doi: 10.1016/j.soildyn.2008.11.007
    Mossessian T K, Dravinski M. 1990. Amplification of elastic waves by a three dimensional valley. Part 1: Steady state response[J]. Earthquake Eng Struct Dyn, 19(5): 667-680. doi: 10.1002/(ISSN)1096-9845
    Olsen K B. 2000. Site amplification in the Los Angeles basin from three dimensional modeling of ground motion[J]. Bull Seismol Soc Am, 90(6B): S77-S94. doi: 10.1785/0120000506
    Sánchez-Sesma F J, Luzón F. 1995. Seismic response of three-dimensional alluvial valleys for incident P, S, and Rayleigh waves[J]. Bull Seismol Soc Am, 85(1): 269-284. http://cn.bing.com/academic/profile?id=6d42a691cfe7b18b9ebef9995baae35c&encoded=0&v=paper_preview&mkt=zh-cn
    Yuan XM, Liao Z P. 1995. Scattering of plane SH waves by a cylindrical alluvial valley of circular-arc cross-section[J]. Earthquake Eng Struct Dyn, 24(10): 1303-1313. doi: 10.1002/(ISSN)1096-9845
    Zhao C B, Valliappan S. 1993. Incident P and SV wave scattering effects under different canyon topographic and geo-logical conditions[J]. Int J Numer Anal Meth Geomech, 17(2): 73-94. doi: 10.1002/(ISSN)1096-9853
  • Related Articles

Catalog

    Article views (814) PDF downloads (26) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return