Jiang Yongzheng, Wang Hongwei, Ren Yefei, Wen Ruizhi. 2017: Rupture directivity effect of near-field ground motions in Italy MW6.2 earthquake on August 24, 2016. Acta Seismologica Sinica, 39(1): 132-142. DOI: 10.11939/jass.2017.01.011
Citation: Jiang Yongzheng, Wang Hongwei, Ren Yefei, Wen Ruizhi. 2017: Rupture directivity effect of near-field ground motions in Italy MW6.2 earthquake on August 24, 2016. Acta Seismologica Sinica, 39(1): 132-142. DOI: 10.11939/jass.2017.01.011

Rupture directivity effect of near-field ground motions in Italy MW6.2 earthquake on August 24, 2016

More Information
  • Received Date: December 13, 2015
  • Revised Date: November 30, 2016
  • Published Date: December 31, 2016
  • For investigating the rupture directivity effect of the central Italy MW6.2 earthquake on August 24, 2016, more than 150 strong motion stations are separated into two groups, which are SE and NW, according to the fault strike. Comparing the PGA, PGV, pseudo-acceleration response spectrum (PSA) and significant duration DSR of two groups, the results show that: the observed PGAs, PGVs and PSAs of NW group are larger than those of SE group; the residuals between the observed and predicted PGAs and PGVs are significantly correlated with the azimuth; the observed DSR of NW group is smaller than that of SE group. From these observations we deduce that the rupture directivity effect exists in this earthquake. Furthermore, the inversion for source rupture parameters using PGAs and PGVs, respectively, shows that the rupture is bilateral, and the MW6.2 earthquake predominantly ruptured in the direction 345°--360°, accounting for 70%--80% of the total rupture, and the rupture velocity is 2.2--2.5 km/s. These results validate the conclusion that the differences of ground motion parameters between two groups of stations might be caused by the rupture directivity effect.
  • 胡进军, 谢礼立. 2011. 汶川地震近场加速度基本参数的方向性特征[J]. 地球物理学报, 54(10): 2581-2589. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201110016.htm
    任叶飞, 温瑞智, 周宝峰, 黄旭涛. 2014. 2013年4月20日四川芦山地震强地面运动三要素特征分析[J]. 地球物理学报, 57(6): 1836-1846. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201406015.htm
    Akinci A, Malagnini L, Sabetta F. 2010. Characteristics of the strong ground motions from the 6 April 2009 L’Aquila earthquake, Italy[J]. Soil Dyn Earthquake Eng, 30(5): 320-335. doi: 10.1016/j.soildyn.2009.12.006
    Akkar S, Bommer J J. 2007a. Prediction of elastic displacement response spectra in Europe and the Middle East[J]. Earthquake Engng Struct Dyn, 36(10): 1275-1301. doi: 10.1002/(ISSN)1096-9845
    Akkar S, Bommer J J. 2007b. Empirical prediction equations for peak ground velocity derived from strong-motion records from Europe and the Middle East[J]. Bull Seismol Soc Am, 97(2): 511-530. doi: 10.1785/0120060141
    Amato A, Montone P. 1997. Present-day stress field and active tectonics in southern peninsular Italy[J]. Geophys J Int, 130(2): 519-534. doi: 10.1111/gji.1997.130.issue-2
    Atkinson G M, Mereu R F. 1992. The shape of ground motion attenuation curves in southeastern Canada[J]. Bull Seismol Soc Am, 82(5): 2014-2031. http://cn.bing.com/academic/profile?id=15a8931a9c961362c995e8daaf233d5c&encoded=0&v=paper_preview&mkt=zh-cn
    Benioff H. 1955. Mechanism and strain characteristics of the White Wolf fault as indicated by the aftershock sequence[G]//Earthquakes in Kern County, California During 1995. Calif Div Mines Bull, California: California State Mining Bureau: 171: 199-202.
    Bertrand E, Duval A M, Régnier J, Azzara R M. 2011. Site effects of the Roio basin, L’Aquila[J]. Bull Earthquake Eng, 9(3): 809-823. doi: 10.1007/s10518-011-9254-6
    Bindi D, Pacor F, Luzi L, Puglia R, Massa M, Ameri G, Paolucci R. 2011. Ground motion prediction equations derived from the Italian strong motion database[J]. Bull Earthquake Eng, 9(6): 1899-1920. doi: 10.1007/s10518-011-9313-z
    Boatwright J. 2007. The persistence of directivity in small earthquakes[J]. Bull Seismol Soc Am, 97(6): 1850-1861. doi: 10.1785/0120050228
    Bommer J J, Stafford P J, Alarcon J E. 2009. Empirical equations for the prediction of the significant, bracketed, and uniform duration of earthquake ground motion[J]. Bull Seismol Soc Am, 99(6): 3217-3233. doi: 10.1785/0120080298
    Boore D M. 2004. Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, earthquake[J]. Bull Seismol Soc Am, 91(5): 1199-1211. doi: 10.1785/0120000703
    Comité Européen de Normalisation. 2003. Eurocode 8: Design of Structures for Earth[S].Brussels:Brusells Comite Europeen de Nromalisation:19-21.
    Convertito V, Emolo A. 2012. Investigating rupture direction for three 2012 moderate earthquakes in northern Italy from inversion of peak ground-motion parameters[J]. Bull Seismol Soc Am, 102(6): 2764-2770. doi: 10.1785/0120120067
    Convertito V, Caccavale M, De Matteis R, Emolo A, Wald D, Zollo A. 2012. Fault extent estimation for near-real-time ground-shaking map computation purposes[J]. Bull Seismol Soc Am, 102(2): 661-679. doi: 10.1785/0120100306
    Frepoli A, Amato A. 1997. Contemporaneous extension and compression in the Northern Apennines from earthquake fault-plane solutions[J]. Geophys J Int, 129(2): 368-388. doi: 10.1111/gji.1997.129.issue-2
    Ghisetti F, Vezzani L. 1981. Contribution of structural analysis to understanding the geodynamic evolution of the Calabrian arc (Southern Italy)[J].J Struct Geol, 3(4): 371-381. doi: 10.1016/0191-8141(81)90037-7
    Ghisetti F, Vezzani L. 2002. Normal faulting, transcrustal permeability and seismogenesis in the Apennines (Italy)[J]. Tectonophysics, 348(1/2/3): 155-168. http://cn.bing.com/academic/profile?id=e8d8fd70912ba5d40cd3a129fc889ad0&encoded=0&v=paper_preview&mkt=zh-cn
    INGV. 2016. Modello preliminare di distribuzione dello spostamento sulla faglia dai dati ALOS2, Sentinel 1 e GPS in continuo[EB/OL]. [2016-08-30]. https://ingvterremoti.wordpress.com/2016/08/30/.
    Savelli C. 1988. Late Oligocene to Recent episodes of magmatism in and around the Tyrrhenian Sea: Implications for the processes of opening in a young inter-arc basin of intra-orogenic (Mediterranean) type[J]. Tectonophysics, 146(1/2/3/4): 163-181. http://cn.bing.com/academic/profile?id=59e77f4d5a8ac31a36bb73a1cd2752fc&encoded=0&v=paper_preview&mkt=zh-cn
    Seekins L C, Boatwright J. 2010. Rupture directivity of moderate earthquakes in northern California[J]. Bull Seismol Soc Am, 100(3): 1107-1119. doi: 10.1785/0120090161
    Somerville P G, Smith N F, Graves R W, Abrahamson N A. 1997. Modification of empirical strong ground motion atte-nuation relations to include the amplitude and duration effects of rupture directivity[J]. Seismol Res Lett, 68(1): 199-222. doi: 10.1785/gssrl.68.1.199
    Trifunac M D, Brady A G. 1975. A study on the duration of strong earthquake ground motion[J]. Bull Seismol Soc Am, 65(3): 581-626. http://cn.bing.com/academic/profile?id=e926e5a933c0321fd4a3ba4c278c4773&encoded=0&v=paper_preview&mkt=zh-cn
    USGS. 2016. Moment tensor[EB/OL]. [2016-08-30]. http://earthquake.usgs.gov/earthquakes/eventpage/us10006g7d#moment-tensor.
    Wen R Z, Wang H W, Ren Y F. 2015. Rupture directivity from strong-motion recordings of the 2013 Lushan aftershocks[J]. Bull Seismol Soc Am, 105(6): 3068-3082. doi: 10.1785/0120150100
  • Related Articles

  • Cited by

    Periodical cited type(36)

    1. 董敏,陈其峰,郑家军,刘海林,张军,杨立涛,韩博,熊玮,马娟,池国民,吴婧. 张店—仁河断裂带多项土壤气背景值初步分析. 高原地震. 2025(01): 6-14 .
    2. 祖丽皮牙·艾尼瓦尔,闫玮,张伟,李新勇,麻荣. 柯坪断裂带土壤气地球化学变化特征及其与强震的关系. 高原地震. 2025(01): 15-23 .
    3. 张菂,李源,张伟,赵伟乔,秦忠培,郭少峰. 2023年8月西代村跨断层短水准异常分析. 地震地磁观测与研究. 2024(06): 83-91 .
    4. 李静,周贺,陈志,陆丽娜,杜建国. 北京西部活动断裂CO_2与Rn脱气特征及其环境影响. 地震研究. 2023(01): 49-57 .
    5. 陈宇轩. 北京延庆五里营地下流体资料时频特征与地震活动关系. 华北地震科学. 2023(02): 58-68+97 .
    6. 王喜龙,罗银花,金秀英,杨梦尧,孔祥瑞. 辽南地区断裂带的断层土壤气地球化学特征及其对区域应力调整的指示. 地震地质. 2023(03): 710-734 .
    7. 张文亮,李营,刘兆飞,胡乐,路畅,陈志,韩晓昆. 六盘山东麓断裂带土壤气体He浓度的空间分布特征及其与构造活动之间的关系. 地震地质. 2023(03): 753-771 .
    8. 李继业,胡澜缤,李营,马龙辰,王强,张思萌,李冬妮. 松原M_S5.1地震前断层土壤气H_2、Hg地球化学特征与热红外异常响应研究. 地震工程学报. 2023(04): 933-945 .
    9. 刘兆飞,何鸿毅,陈志,李营,路畅,邵俊杰,高梓涵. 北京黄庄—高丽营断裂土壤气体地球化学特征及其对地震活动的指示. 地震学报. 2023(04): 727-746 . 本站查看
    10. 符泽宇,刘燕翔,李金,王妍. 唐山断裂带土壤断层气CO_2浓度的映震效能. 地震地磁观测与研究. 2023(04): 85-94 .
    11. 鲍志诚,赵爱平,吕坚,肖健,周红艳,宁洪涛,汤兰荣,陈浩. 瑞昌—武宁活动断裂带土壤气地球化学特征. 地震研究. 2022(02): 249-256 .
    12. 路畅,李营,胡乐,赵策,刘兆飞,邵俊杰,陈志. 唐山地区土壤气Rn通量及其与地震活动的关系. 地震研究. 2022(02): 241-248 .
    13. 王喜龙,杨梦尧,郭红霞,刘建光. 辽宁盘一井氢气浓度异常特征及预报效能分析. 地震研究. 2022(02): 275-283 .
    14. 王江,陈志,张帆,张志相,刘兆飞,何鸿毅,唐杰,丁志华,张素欣. 基于土壤气体地球化学的雄安新区活动断裂空间展布及活动性探讨. 地震研究. 2022(02): 264-274 .
    15. 闫玮,朱成英,李新勇,许秋龙,汪成国,徐衍刚. 新疆伽师M_S6.4地震前后柯坪断裂土壤气地球化学特征变化. 内陆地震. 2022(04): 362-368 .
    16. 王喜龙,杨梦尧,孔祥瑞,杨振鹏. 辽宁朝阳-北票断裂跨断层水准与断层土壤气地球化学特征对比分析. 大地测量与地球动力学. 2021(06): 600-605 .
    17. 阚宝祥,沈钰,戴陈兵,曾利萍,张震峰,张帆,于俊谊. 浙江省珊溪水库地区土壤Rn和H_2地球化学特征. 地震工程学报. 2021(06): 1310-1316 .
    18. 王喜龙,贾晓东,杨梦尧. 辽宁金州断裂断层土壤气地球化学调查. 中国地震. 2021(04): 767-779 .
    19. 刘峰立,欧阳澍培,李营,周晓成,颜玉聪. 铜陵市土壤气环境地球化学特征. 环境科学与技术. 2021(S2): 81-88 .
    20. 肖攀,汪世仙,李露露,潘洁,张伟峰. 蚌埠地震台土壤气Rn和C0_2地球化学特征分析. 科技资讯. 2020(07): 195-200 .
    21. 娄露玲,胡宁,王宇,张宝山,马志敏,王明亮. 汤阴地堑南部土壤CO_2空间分布特征. 华北地震科学. 2020(04): 34-41 .
    22. 康健,赵谊,臧姗姗,徐岳仁,王丽梅,刘长生. 依兰-伊通断裂方正-萝北段氢气特征研究. 震灾防御技术. 2020(02): 443-451 .
    23. 康健,徐岳仁,姜云爽,杜天然,马艳丽,李继业. 依兰—伊通断裂北段断层氢气的地球化学特征分析. 地震地磁观测与研究. 2020(04): 111-120 .
    24. 苏鹤军,王宗礼,曹玲玲,张慧,李晨桦,周慧玲. 断裂带土壤气测量方法在断层活动性研究中的应用——以嘉峪关断层为例. 中国地质. 2020(06): 1894-1903 .
    25. 苏荣托雅,高小其. 我国地震断层土壤气流动观测调查. 地震地磁观测与研究. 2020(05): 122-127 .
    26. 缪阿丽,张扬,方震,李锋,王维,高力. 郯庐断裂带新沂——泗洪段土壤气Rn体积活度和CO_2浓度特征研究. 地震. 2019(01): 48-57 .
    27. 张磊,刘耀炜,包创,郭丽爽. 安宁河断裂带土壤汞的分布特征. 地震学报. 2019(02): 249-258+278 . 本站查看
    28. 张磊,刘耀炜,包创,高小其,苏琴,方震. 川西冕宁断层土壤气特征. 环境化学. 2019(04): 777-783 .
    29. 李晨桦,张慧,苏鹤军,周慧玲,徐钦. CO_2气体在地震孕育与发生过程中的作用及其机理研究. 地震工程学报. 2019(03): 750-756 .
    30. 杨江,李营,陈志,孙凤霞,赵建明,李静,王江. 唐山断裂带南西段和北东段土壤气Rn和CO_2浓度特征. 地震. 2019(03): 61-70 .
    31. 刘兆飞,李营,陈志,崔月菊,路畅,杨江,赵元鑫. 吉兰泰断陷盆地周缘断裂带气体释放及其对断层活动性的指示意义. 地震学报. 2019(05): 613-632+680 . 本站查看
    32. 李源,马兴全,夏修军,谢恒义,王志铄,赵显刚. 河南新郑—太康断裂东段土壤气体地球化学特征. 地震. 2018(03): 49-57 .
    33. 李静,周晓成,石宏宇,孙凤霞,陆丽娜,陈超,曾令华,陈志. 首都圈西北部主要活动断裂CO_2、Rn、Hg脱气对环境的影响. 环境化学. 2018(05): 931-941 .
    34. 李静,陈志,陆丽娜,周晓成,李营. 夏垫活动断裂CO_2、Rn、Hg脱气对环境的影响. 矿物岩石地球化学通报. 2018(04): 629-638+795 .
    35. 赵建明,李营,陈志,刘兆飞,赵荣琦,荣伟健. 蔚县-广灵断裂和口泉断裂气体排放和断裂活动性关系. 地震地质. 2018(06): 1402-1416 .
    36. 张磊,高小其,包创,李静,李旭茂. 呼图壁地下储气库构造气体地球化学特征. 地震地质. 2018(05): 1059-1071 .

    Other cited types(11)

Catalog

    Article views (755) PDF downloads (14) Cited by(47)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return