Jiang Yu, Shan Xinjian, Song Xiaogang, Gong Wenyu, Wang Zhenjie. 2017: Atmospheric correction for InSAR and its application in mapping ground motion due to interseismic strain accumulation. Acta Seismologica Sinica, 39(3): 374-385. DOI: 10.11939/jass.2017.03.007
Citation: Jiang Yu, Shan Xinjian, Song Xiaogang, Gong Wenyu, Wang Zhenjie. 2017: Atmospheric correction for InSAR and its application in mapping ground motion due to interseismic strain accumulation. Acta Seismologica Sinica, 39(3): 374-385. DOI: 10.11939/jass.2017.03.007

Atmospheric correction for InSAR and its application in mapping ground motion due to interseismic strain accumulation

More Information
  • Received Date: October 31, 2016
  • Revised Date: January 11, 2017
  • Published Date: April 30, 2017
  • It is essential to correct the atmospheric error for measuring interseismic deformation in the order of mm/a. In this paper, Laohushan fault on the northeastern margin of the Tibetan Plateau is chosen as the study area. In order to derive the accurate interseismic deformation field, we evaluate three atmospheric correction methods (MERIS, ERA-Ⅰ, WRF) based on the corrected results on interferograms with small temporal-baselines. The optimal atmospheric correction methods and orbital correction methods are applied to correct errors in the large-temporal-baseline interferograms, then the average interseismic deformation fields are achieved by stacking the atmosphere and orbit-corrected interferograms. Our results show that the MERIS and ERA-Ⅰ are more suitable to be used to correct the atmospheric effect in ASAR interferograms than WRF in Haiyuan fault system area; on the other hand, the MERIS-corrected and ERA-Ⅰ-corrected deformation rate fields show a similar pattern of left-lateral displacement across the Laohushan fault, and the profiles across the fault show that the line-of-sight velocity across the fault is 2.5 mm/a, which is equal to 6.5 mm/a parallel to the fault and accords well with GPS observations. In addition, there is a large displacement gradient within 5 km near the fault, revealing shallow creep near the surface.
  • 崔喜爱, 曾琪明, 童庆禧, 焦健, 梁存任. 2014.重轨星载InSAR测量中的大气校正方法综述[J].遥感技术与应用, 29(1): 9-17. https://wenku.baidu.com/view/b0a587b8fab069dc51220108.html

    Cui X A, Zeng Q M, Tong Q X, Jiao J, Liang C R. 2014. Overview of the atmospheric correction methods in repeat-pass InSAR measurements[J]. Remote Sensing Technology and Application, 29(1): 9-17 (in Chinese). https://wenku.baidu.com/view/b0a587b8fab069dc51220108.html
    代如锋. 2015. WRF模式在西北地区的适用性分析[C]//第32届中国气象学会年会: 军用数值天气预报技术及应用. 北京: 中国气象学会: 9.

    Dai R F. 2015. The applicability analysis of WRF model in northwest China[C]//The 32th Annual Meeting of Chinese Meteorological Society: Military Numerical Weather Forecast Techniques and Application. Beijing: Chinese Meteorological Society: 9 (in Chinese).
    国家地震局地质研究所, 宁夏回族自治区地震局. 1990.海原活动断裂带[M].北京:地震出版社: 1-286.

    Institute of Geology of State Seismological Bureau, Seismological Bureau of Ningxia Hui Autonomous Region. 1990. The Haiyuan Active Fault Zone[M]. Beijing: Seismological Press: 1-286 (in Chinese).
    王立稳, 杨军, 程菲. 2015.北天山东段一次暴雨过程的数值模拟研究:动力与微物理机制[J].科学技术与工程, 15(20): 201-211, 215 (in Chinese). doi: 10.3969/j.issn.1671-1815.2015.20.032

    Wang L W, Yang J, Cheng F. 2015. Numerical study of a heavy rain process in the eastern part of North Tianshan Mountains: Kinematics and microphysical mechanism[J]. Science Technology and Engineering, 15(20): 201-211, 215. doi: 10.3969/j.issn.1671-1815.2015.20.032
    Bekaert D P S, Walters R J, Wright T J, Hooper A J, Parker D J. 2015. Statistical comparison of InSAR tropospheric correction techniques[J]. Remote Sens Environ, 170: 40-47. doi: 10.1016/j.rse.2015.08.035
    Bevis M, Businger S, Herring T A, Rocken C, Anthes R A, Ware R H. 1992. GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System[J]. J Geophys Res, 97(D14): 15787-15801. doi: 10.1029/92JD01517
    Cavalié O, Lasserre C, Doin M P, Peltzer G, Sun J, Xu X, Shen Z K. 2008. Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR[J]. Earth Planet Sci Lett, 275(3/4): 246-257. https://www.researchgate.net/publication/244540363_Measurement_of_interseismic_strain_across_the_Haiyuan_fault_Gansu_China_by_InSAR
    Doin M P, Lasserre C, Peltzer G, Cavalié O, Doubre C. 2009. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models[J]. J Appl Geophys, 69(1): 35-50. doi: 10.1016/j.jappgeo.2009.03.010
    Farr T G, Rosen P A, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D. 2007. The Shuttle Radar Topography Mission[J]. Rev Geophys, 45(2): RG2004. https://en.wikipedia.org/wiki/Shuttle_Radar_Topography_Mission
    Gan W J, Zhang P Z, Shen Z K, Niu Z J, Wang M, Wan Y G, Zhou D M, Cheng J. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. J Geophys Res, 112: B08416. doi: 10.1029/2005JB004120.
    Gaudemer Y, Tapponnier P, Meyer B, Peltzer G, Guo S M, Chen Z T, Dai H G, Cifuentes I. 1995. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the 'Tianzhu gap', on the western Haiyuan fault, Gansu (China)[J]. Geophys J Int, 120(3): 599-645. doi: 10.1111/j.1365-246X.1995.tb01842.x
    Gong W, Meyer F J, Lee C W, Lu Z, Freymueller J. 2015. Measurement and interpretation of subtle deformation signals at Unimak Island from 2003 to 2010 using weather model-assisted time series InSAR[J]. J Geophys Res, 120(2): 1175-1194. doi: 10.1002/2014JB011384
    Jolivet R, Agram P S, Lin N Y, Simons M K, Doin M P, Peltzer G, Li Z H. 2014. Improving InSAR geodesy using global atmospheric models[J]. J Geophys Res, 119(3): 2324-2341. doi: 10.1002/2013JB010588
    Jolivet R, Lasserre C, Doin M P, Guillaso S, Peltzer G, Dailu R, Sun J, Shen Z K, Xu X. 2012. Shallow creep on the Haiyuan fault (Gansu, China) revealed by SAR interferometry[J]. J Geophys Res, 117: B06401. doi: 10.1029/2011JB008732.
    Jung J, Kim D J, Park S E. 2014. Correction of atmospheric phase screen in time series InSAR using WRF model for monitoring volcanic activities[J]. IEEE Trans Geosci Remote Sens, 52(5): 2678-2689. doi: 10.1109/TGRS.2013.2264532
    Li X, Rignot E, Morlighem M, Mouginot J, Scheuchl B. 2015. Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013[J]. Geophys Res Lett, 42(19): 8049-8056. doi: 10.1002/2015GL065701
    Li Z, Muller J P, Cross P, Albert P, Fischer J, Bennartz R. 2006. Assessment of the potential of MERIS near-infrared water vapour products to correct ASAR interferometric measurements[J]. Int J Remote Sens, 27(2): 349-365. doi: 10.1080/01431160500307342
    Lindsey E O, Natsuaki R, Xu X H, Shimada M, Hashimoto M, Melgar D, Sandwell D T. 2015. Line-of-sight displacement from ALOS-2 interferometry: MW7.8 Gorkha earthquake and MW7.3 aftershock[J]. Geophys Res Lett, 42(16): 6655-6661. doi: 10.1002/2015GL065385
    Liu-Zeng J, Klinger Y, Xu X W, Lasserre C, Chen G H, Chen W B, Tapponnier P, Zhang B. 2007. Millennial recurrence of large earthquakes on the Haiyuan fault near Songshan, Gansu Province, China[J]. Bull Seismol Soc Am, 97(1B): 14-34. doi: 10.1785/0120050118
    Massonnet D, Feigl K, Rossi M, Adragna F. 1994. Radar interferometric mapping of deformation in the year after the Landers earthquake[J]. Nature, 369(6477): 227-230. doi: 10.1038/369227a0
    Ramon D, Cazier L, Santer R. 2003. The surface pressure retrieval in the MERIS O2 absorption: Validation and potential improvements[C]//Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium. Toulouse: IEEE, 5: 3126-3128.
    Rosen P A, Hensley S, Peltzer G, Simons M. 2004. Updated repeat orbit interferometry package released[J]. Eos, 85(5): 47. https://www.researchgate.net/publication/248239882_Updated_Repeat_Orbit_Interferometry_Package_Released
    Savage J C, Burford R O. 1973. Geodetic determination of relative plate motion in central California[J]. J Geophys Res, 78(5): 832-845. doi: 10.1029/JB078i005p00832
    Su F G, Duan X L, Chen D L, Hao Z C, Cuo L. 2013. Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau[J]. J Climate, 26(10): 3187-3208. doi: 10.1175/JCLI-D-12-00321.1
    Wang C C, Mao X K, Wang Q J. 2016. Landslide displacement monitoring by a fully polarimetric SAR offset tracking method[J]. Remote Sens, 8(8): 624. doi: 10.3390/rs8080624
    Zebker H A, Rosen P A, Hensley S. 1997. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps[J]. J Geophys Res, 102(B4): 7547-7563. doi: 10.1029/96JB03804
    Zhang Y H, Wu H A, Kang Y H, Zhu C G. 2016. Ground subsidence in the Beijing-Tianjin-Hebei region from 1992 to 2014 revealed by multiple SAR stacks[J]. Remote Sens, 8(8): 675. doi: 10.3390/rs8080675
  • Related Articles

  • Cited by

    Periodical cited type(6)

    1. Feng Li,Peng Zhai,Jinshui Huang,Hongbo Tan. Influences of the heterogeneity of viscoelastic medium on postseismic deformation of the 2008 M_W7.9 Wenchuan earthquake. Geodesy and Geodynamics. 2022(01): 1-10 .
    2. 姚文举,唐红涛. 利用GPS数据分析四川“Y”型构造区地壳运动状态. 地震地磁观测与研究. 2021(04): 57-66 .
    3. 贺克锋,赵斌,杜瑞林. 利用长期GPS数据研究2008年汶川地震震后形变. 大地测量与地球动力学. 2019(02): 122-126 .
    4. 赵静,李皎皎. 对大陆逆冲型地震的一点认识——以汶川地震为例. 大地测量与地球动力学. 2016(01): 62-65 .
    5. 朱良玉,王庆良,蒋锋云,郑申宝. 非构造形变对区域网GPS垂直形变的影响. 测绘科学. 2014(09): 49-53 .
    6. 朱良玉,王双绪,蒋锋云. 利用震后GPS数据反演汶川地区有效黏滞系数. 地震学报. 2014(01): 32-41+158 . 本站查看

    Other cited types(1)

Catalog

    Article views (840) PDF downloads (50) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return