Liu Yuan, Xue Mei. 2021: Seismic anisotropy within the Nankai area,Japan,using DONET seafloor observation network. Acta Seismologica Sinica, 43(1): 73-83. DOI: 10.11939/jass.20200087
Citation: Liu Yuan, Xue Mei. 2021: Seismic anisotropy within the Nankai area,Japan,using DONET seafloor observation network. Acta Seismologica Sinica, 43(1): 73-83. DOI: 10.11939/jass.20200087

Seismic anisotropy within the Nankai area,Japan,using DONET seafloor observation network

More Information
  • Received Date: May 22, 2020
  • Revised Date: August 23, 2020
  • Available Online: November 16, 2020
  • Published Date: January 14, 2021
  • Based on the direct S-wave seismic records of the DONET seafloor observation network, this paper obtains the orientation of shear wave splitting fast axis and splitting time of Naikai area of Japan by using the cross-correlation method and the smallest eigenvalue minimization method. The results show the fast axis of the anisotropy in the subduction zone is sub-parallel to the strike of the Nankai trough, and the splitting time ranges from 0.1 s to 0.96 s. This indicates that the anisotropy of the Nankai subduction zone originates from the mantle wedge which overlies the subducted Pacific Plate and the subducted Philippine Sea slab. The anisotropy of the mantle wedge is caused by the existence of two-dimensional corner flow that causes the anisotropic mineral crystals to be oriented along the direction perpendicular to the trench. The anisotropy of the subducted Philippine Sea slab is caused by the “fossil anisotropy” and the faults related to the plate bending during the subduction. The widely varying splitting times reflect the inhomogeneous strength and/or thickness of the anisotropic structure beneath the area.
  • 高原,滕吉文. 2005. 中国大陆地壳与上地幔地震各向异性研究[J]. 地球物理学进展,20(1):180–185. doi: 10.3969/j.issn.1004-2903.2005.01.032
    Gao Y,Teng J W. 2005. Studies on seismic anisotropy in the crust and mantle on Chinese mainland[J]. Progress in Geophysics,20(1):180–185 (in Chinese).
    申中寅. 2018. 日本海洋实时监测系统DONET简介[J]. 国际地震动态,(7):34–40. doi: 10.3969/j.issn.0253-4975.2018.07.007
    Shen Z Y. 2018. A brief introduction to DONET in Japan[J]. Recent Developments in World Seismology,(7):34–40 (in Chinese).
    孙圣思,嵇少丞. 2011. 大洋板块俯冲带地震波各向异性及剪切波分裂的成因机制[J]. 大地构造与成矿学,35(4):628–647. doi: 10.3969/j.issn.1001-1552.2011.04.017
    Sun S S,Ji S C. 2011. On the formation of seismic anisotropy and shear wave splitting in oceanic subduction zones[J]. Geotectonica et Metallogenia,35(4):628–647 (in Chinese).
    滕吉文,张中杰,王光杰,张秉铭,王铁男. 2000. 地球内部各圈层介质的地震各向异性与地球动力学[J]. 地球物理学进展,15(1):1–35. doi: 10.3969/j.issn.1004-2903.2000.01.001
    Teng J W,Zhang Z J,Wang G J,Zhang B M,Wang T N. 2000. The seismic anisotropy and geodynamics of earth’s interior media[J]. Progress in Geophysics,15(1):1–35 (in Chinese).
    Abdelwahed M F,Zhao D P. 2007. Deep structure of the Japan subduction zone[J]. Phys Earth Planet Inter,162(1/2):32–52.
    Ando M. 1975. Source mechanisms and tectonic significance of historical earthquakes along the Nankai trough,Japan[J]. Tectonophysics,27(2):119–140. doi: 10.1016/0040-1951(75)90102-X
    Asamori K,Zhao D P. 2015. Teleseismic shear wave tomography of the Japan subduction zone[J]. Geophys J Int,203(3):1752–1772.
    Baba T,Tanioka Y,Cummins P R,Uhira K. 2002. The slip distribution of the 1946 Nankai earthquake estimated from tsunami inversion using a new plate model[J]. Phys Earth Planet Inter,132(1/3):59–73.
    Bowman J R,Ando M. 1987. Shear‐wave splitting in the upper‐mantle wedge above the Tonga subduction zone[J]. Geophys J Int,88(1):25–41. doi: 10.1111/j.1365-246X.1987.tb01367.x
    Crampin S,Evans R,Üçer S B. 1985. Analysis of records of local earthquakes:The Turkish Dilatancy Projects (TDP1 and TDP2)[J]. Geophys J Int,83(1):1–16. doi: 10.1111/j.1365-246X.1985.tb05152.x
    Crampin S,Peacock S. 2005. A review of shear-wave splitting in the compliant crack-critical anisotropic Earth[J]. Wave Motion,41(1):59–77. doi: 10.1016/j.wavemoti.2004.05.006
    Evans R. 1984. Effects of the free surface on shear wavetrains[J]. Geophys J Int,76(1):165–172. doi: 10.1111/j.1365-246X.1984.tb05032.x
    Faccenda M,Burlini L,Gerya T V,Mainprice D. 2008. Fault-induced seismic anisotropy by hydration in subducting oceanic plates[J]. Nature,455(7216):1097–1100. doi: 10.1038/nature07376
    Fouch M J,Fischer K M. 1996. Mantle anisotropy beneath northwest Pacific subduction zones[J]. J Geophys Res:Solid Earth,101(B7):15987–16002. doi: 10.1029/96JB00881
    Francis T J G. 1969. Generation of seismic anisotropy in the upper mantle along the mid-oceanic ridges[J]. Nature,221(5176):162–165.
    Funiciello F,Faccenna C,Heuret A,Lallemand S,Di Giuseppe E,Becker T W. 2008. Trench migration,net rotation and slab-mantle coupling[J]. Earth Planet Sci Lett,271(1/4):233–240.
    Hayes G P,Moore G L,Portner D E,Hearne M,Flamme H,Furtney M,Smoczyk G M. 2018. Slab2,a comprehensive subduction zone geometry model[J]. Science,362(6410):58–61. doi: 10.1126/science.aat4723
    Hess H H. 1964. Seismic anisotropy of the uppermost mantle under oceans[J]. Nature,203(4945):629–631. doi: 10.1038/203629a0
    Hirose F,Nakajima J,Hasegawa A. 2008. Three-dimensional seismic velocity structure and configuration of the Philippine Sea slab in southwestern Japan estimated by double-difference tomography[J]. J Geophys Res:Solid Earth,113(B9):B09315.
    Hua Y Y,Zhao D P,Xu Y X,Liu X. 2018. Age of the subducting Philippine Sea slab and mechanism of low‐frequency earthquakes[J]. Geophys Res Lett,45(5):2303–2310. doi: 10.1002/2017GL076531
    Kaneda Y. 2010. The advanced ocean floor real time monitoring system for mega thrust earthquakes and tsunamis: Application of DONET and DONET2 data to seismological research and disaster mitigation[C]//Proceedings of Oceans 2010 MTS/IEEE Seattle. Seattle, WA: IEEE: 1–6.
    Kuo B Y,Chen C C,Shin T C. 1994. Split S waveforms observed in northern Taiwan:Implications for crustal anisotropy[J]. Geophys Res Lett,21(14):1491–1494. doi: 10.1029/94GL01254
    Liang W T. 1990. Shear Wave Splitting in Northern Taiwan: Implications for Crustal Anisotropy[D]. Taipei, China: Taiwan University: 1–95.
    Long M D,Silver P G. 2008. The subduction zone flow field from seismic anisotropy:A global view[J]. Science,319(5861):315–318. doi: 10.1126/science.1150809
    Long M D,Silver P G. 2009. Mantle flow in subduction systems:The subslab flow field and implications for mantle dynamics[J]. J Geophys Res:Solid Earth,114(B10):B10312. doi: 10.1029/2008JB006200
    Long M D,van der Hilst R D. 2005. Upper mantle anisotropy beneath Japan from shear wave splitting[J]. Phys Earth Planet Inter,151(3/4):206–222.
    Long M D. 2013. Constraints on subduction geodynamics from seismic anisotropy[J]. Rev Geophys,51(1):76–112. doi: 10.1002/rog.20008
    Nakajima J,Hasegawa A. 2007. Tomographic evidence for the mantle upwelling beneath southwestern Japan and its implications for arc magmatism[J]. Earth Planet Sci Lett,254(1/2):90–105.
    Nakano M,Tonegawa T,Kaneda Y. 2012. Orientations of DONET seismometers estimated from seismic waveforms[J]. JAMSTEC Rep Res Dev,15:77–89. doi: 10.5918/jamstecr.15.77
    National Research Institute for Earth Science and Disaster Resilience. 2019. NIED DONET[EB/OL]. [2019-03-29]. http://www.seafloor.bosai.go.jp/DONET/.
    Okino K,Ohara Y,Kasuga S,Kato Y. 1999. The Philippine Sea:New survey results reveal the structure and the history of the marginal basins[J]. Geophys Res Lett,26(15):2287–2290. doi: 10.1029/1999GL900537
    Russo R M,Silver P G. 1994. Trench-parallel flow beneath the Nazca plate from seismic anisotropy[J]. Science,263(5150):1105–1111. doi: 10.1126/science.263.5150.1105
    Saiga A,Kato A,Kurashimo E,Iidaka T,Okubo M,Tsumura N,Iwasaki T,Sakai S I,Hirata N. 2013. Anisotropic structures of oceanic slab and mantle wedge in a deep low-frequency tremor zone beneath the Kii Peninsula,SW Japan[J]. J Geophys Res:Solid Earth,118(3):1091–1097. doi: 10.1002/jgrb.50069
    Salah M K,Zhao D P. 2003. 3-D seismic structure of Kii Peninsula in southwest Japan:Evidence for slab dehydration in the forearc[J]. Tectonophysics,364(3/4):191–213.
    Salah M K,Seno T,Iidaka T. 2008. Upper mantle anisotropy beneath central and southwest Japan:An insight into subduction-induced mantle flow[J]. J Geodyn,46(1/2):21–37.
    Savage M K. 1999. Seismic anisotropy and mantle deformation:What have we learned from shear wave splitting?[J]. Rev Geophys,37(1):65–106. doi: 10.1029/98RG02075
    Silver P G,Chan W W. 1991. Shear wave splitting and subcontinental mantle deformation[J]. J Geophys Res:Solid Earth,96(B10):16429–16454. doi: 10.1029/91JB00899
    Takaesu M, Horikawa H, Sueki K, Kamiya S, Nakamura T, Nakano M, Takahashi N, Sonoda A, Tsuboi S. 2014. Development of an event search and download system for analyzing waveform data observed at seafloor seismic network, DONET[C/OL]//Proceedings of American Geophysical Union, Fall Meeting 2014. [2020−05−23]. http://adsabs.harvard.edu/abs/2014AGUFM.S11F4407T.
    The Seismological Bulletin of Japan. 2020. Earthquake parameters[EB/OL]. [2019−03−29]. https://www.data.jma.go.jp/svd/eqev/data/bulletin/eqdoc_e.html.
    Volti T,Kaneda Y,Zatsepin S,Crampin S. 2005. An anomalous spatial pattern of shear-wave splitting observed in ocean bottom seismic data above a subducting seamount in the Nankai Trough[J]. Geophys J Int,163(1):252–264. doi: 10.1111/j.1365-246X.2005.02743.x
    Wang J,Zhao D P. 2012. P wave anisotropic tomography of the Nankai subduction zone in southwest Japan[J]. Geochem Geophys Geosyst,13(5):Q05017.
    Wirth E,Long M D. 2010. Frequency-dependent shear wave splitting beneath the Japan and Izu-Bonin subduction zones[J]. Phys Earth Planet Inter,181(3/4):141–154.
    Wu J,Suppe J,Lu R Q,Kanda R. 2016. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods[J]. J Geophys Res:Solid Earth,121(6):4670–4741. doi: 10.1002/2016JB012923
    Xue M,Le K P,Yang T. 2013. Seismic anisotropy surrounding South China Sea and its geodynamic implications[J]. Mar Geophys Res,34(3/4):407–429.
    Zhao S,Wu X,Hori T,Smith A,Kaneda Y,Takemoto S. 2003. Deformation and stress localization at the Nankai subduction zone,southwest Japan[J]. Earth Planet Sci Lett,206(1/2):145–160.
  • Related Articles

  • Cited by

    Periodical cited type(4)

    1. 冀国强,雷建设,赵大鹏. 利用多震相走时成像研究胶东地区三维地壳速度结构与震群孕震环境. 地球物理学报. 2025(01): 123-138 .
    2. 汪煜昆,赵丹,刘婷芝,淦文杰,王永强,张清秀,郭静姝. 致密砂岩压裂后的储层敏感性特征实验——以四川盆地JQ地区沙溪庙组8号砂体为例. 天然气勘探与开发. 2024(03): 85-93 .
    3. 孟秋,王子韬,张怀. 2023年8月6日山东德州平原M 5.5地震同震变形及地震活动性变化数值模拟. 地质学报. 2024(07): 2101-2109 .
    4. 韩光洁,刘奕君,席楠. 2023年山东平原M_S 5.5地震宽频带面波震级和近场地震动反应谱空间分布特征分析. 地震地磁观测与研究. 2023(06): 13-19 .

    Other cited types(0)

Catalog

    Article views (1359) PDF downloads (97) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return