Zhang H C,Liao S R,Chen Z Y,Huang L Z. 2021. An automatic S phase picking algorithm for local earthquake events. Acta Seismologica Sinica43(3):338−349. DOI: 10.11939/jass.20200112
Citation: Zhang H C,Liao S R,Chen Z Y,Huang L Z. 2021. An automatic S phase picking algorithm for local earthquake events. Acta Seismologica Sinica43(3):338−349. DOI: 10.11939/jass.20200112

An automatic S phase picking algorithm for local earthquake events

More Information
  • Received Date: July 08, 2020
  • Revised Date: November 01, 2020
  • Available Online: August 25, 2021
  • Published Date: May 14, 2021
  • Base on eigenvalue decomposition calculation, we discussed an automatic S phase picking algorithm suitable for local earthquake events. The algorithm needs few parameters, less computer resources and is easy to realize. By choosing seven time windows with different time length, it effectively reduce the S phase pick errors that caused by unreasonable time window selection. By taking 9 855 three-component records of Fujian seismic monitoring network, we test the applicability and accuracy of this algorithm. The results show that average S phase picking error by this method is (0.003±1.34) s, 79.6% of them are within 0.5 s, 4.1% of them are greater than 2.0 s, which indicates that the algorithm can meet the demands for daily S phase picking. All above-mentioned suggests that the quality of records is the most important factor that affects the accuracy of picking results, the S phase picking errors for high signal-noise ratio records are usually smaller than those for low signal-noise ratio records, and the accuracy of S phase picking for some low signal-noise ratio records will be improved after a band-pass filter preprocess.
  • 李安,杨建思,彭朝勇,郑钰,刘莎. 2020. 基于样本增强的卷积神经网络震相拾取方法[J]. 地震学报,42(2):163–176. doi: 10.11939/jass.20190070
    Li A,Yang J S,Peng C Y,Zheng Y,Liu S. 2020. Seismic phase identification using the convolutional neural networks based on sample enhancement[J]. Acta Seismologica Sinica,42(2):163–176 (in Chinese). doi: 10.11939/jass.20190070(inChinese)
    刘希强,周蕙兰,郑治真,沈萍,杨选辉,马延路. 1998. 基于小波包变换的弱震相识别方法[J]. 地震学报,20(4):373–380. doi: 10.3321/j.issn:0253-3782.1998.04.005
    Liu X Q,Zhou H L,Zheng Z Z,Shen P,Yang X H,Ma Y L. 1998. Identification method of weak seismic phases on the basis of wavelet packet transform[J]. Acta Seismologica Sinica,20(4):373–380 (in Chinese).
    刘希强,周蕙兰,沈萍,杨选辉,马延路,李红. 2000. 用于三分向记录震相识别的小波变换方法[J]. 地震学报,22(2):125–131. doi: 10.3321/j.issn:0253-3782.2000.02.002
    Liu X Q,Zhou H L,Shen P,Yang X H,Ma Y L,Li H. 2000. Identification method of seismic phase in three-component seismograms on the basis of wavelet transform[J]. Acta Seismologica Sinica,22(2):125–131 (in Chinese).
    马强. 2008. 地震预警技术研究及应用[D]. 哈尔滨: 中国地震局工程力学研究所: 14–39.
    Ma Q. 2008. Study and Application on Earthquake Early Warning[D]. Harbin: China Earthquake Administration, Institute of Engineering Mechanics: 14–39 (in Chinese).
    马强,金星,李山有,陈绯雯,廖诗荣,韦永祥. 2013. 用于地震预警的P波震相到时自动拾取[J]. 地球物理学报,56(7):2313–2321. doi: 10.6038/cjg20130718
    Ma Q,Jin X,Li S Y,Chen F W,Liao S R,Wei Y X. 2013. Automatic P-arrival detection for earthquake early warning[J]. Chinese Journal of Geophysics,56(7):2313–2321 (in Chinese). doi: 10.6038/cjg20130718(inChinese)
    赵明,陈石,房立华,Yuen D A. 2019. 基于U形卷积神经网络的震相识别与到时拾取方法研究[J]. 地球物理学报,62(8):3034–3042. doi: 10.6038/cjg2019M0495
    Zhao M,Chen S,Fang L H,Yuen D A. 2019. Earthquake phase arrival auto-picking based on U-shaped convolutional neural network[J]. Chinese Journal of Geophysics,62(8):3034–3042 (in Chinese).
    Akaike H. 1974. A new look at the statistical model identification[J]. IEEE Trans Automat Control,19(6):716–723. doi: 10.1109/TAC.1974.1100705
    Allen R. 1982. Automatic phase pickers:Their present use and future prospects[J]. Bull Seismol Soc Am,72(6B):S225–S242. doi: 10.1785/BSSA07206B0225
    Amoroso O,Maercklin N,Zollo A. 2012. S-wave identification by polarization filtering and waveform coherence analyses[J]. Bull Seismol Soc Am,102(2):854–861. doi: 10.1785/0120110140
    Anant K S,Dowla F U. 1997. Wavelet transform methods for phase identification in three-component seismograms[J]. Bull Seismol Soc Am,87(6):1598–1612.
    Baer M,Kradolfer U. 1987. An automatic phase picker for local and teleseismic events[J]. Bull Seismol Soc Am,77(4):1437–1445. doi: 10.1785/BSSA0770041437
    Chu C K P,Mendel J M. 1994. First break refraction event picking using fuzzy logic systems[J]. IEEE Trans Fuzzy Syst,2(4):255–266. doi: 10.1109/91.324805
    Cichowicz A. 1993. An automatic S-phase picker[J]. Bull Seismol Soc Am,83(1):180–189.
    Dai H C,MacBeth C. 1995. Automatic picking of seismic arrivals in local earthquake data using an artificial neural network[J]. Geophys J Int,120(3):758–774. doi: 10.1111/j.1365-246X.1995.tb01851.x
    Flinn E A. 1965. Signal analysis using rectilinearity and direction of particle motion[J]. Proc IEEE,53(12):1874–1876. doi: 10.1109/PROC.1965.4462
    Jurkevics A. 1988. Polarization analysis of three-component array data[J]. Bull Seismol Soc Am,78(5):1725–1743.
    Küperkoch L,Meier T,Brüstle A,Lee J,Friederich W. 2012. Automated determination of S-phase arrival times using autoregressive prediction:Application to local and regional distances[J]. Geophys J Int,188(2):687–702. doi: 10.1111/j.1365-246X.2011.05292.x
    Kong Q K,Trugman D T,Ross Z E,Bianco M J,Meade B J,Gerstoft P. 2019. Machine learning in seismology:Turning data into insights[J]. Seismol Res Lett,90(1):3–14. doi: 10.1785/0220180259
    Lois A,Sokos E,Martakis N,Paraskevopoulos P,Tselentis G A. 2013. A new automatic S-onset detection technique:Application in local earthquake data[J]. Geophysics,78(1):KS1–KS11. doi: 10.1190/GEO2012-0050.1
    Lomax A,Satriano C,Vassallo M. 2012. Automatic picker developments and optimization:FilterPicker:A robust,broadband picker for real-time seismic monitoring and earthquake early warning[J]. Seismol Res Lett,83(3):531–540. doi: 10.1785/gssrl.83.3.531
    Perol T,Gharbi M,Denolle M. 2018. Convolutional neural network for earthquake detection and location[J]. Sci Adv,4(2):e1700578. doi: 10.1126/sciadv.1700578
    Ross Z E,Meier M A,Hauksson E,Heaton T H. 2018a. Generalized seismic phase detection with deep learning[J]. Bull Seismol Soc Am,108(5A):2894–2901. doi: 10.1785/0120180080
    Ross Z E,Meier M A,Hauksson E. 2018b. P wave arrival picking and first-motion polarity determination with deep learning[J]. J Geophys Res:Solid Earth,123(6):5120–5129. doi: 10.1029/2017JB015251
    Ruud B O,Husebye E S. 1992. A new three-component detector and automatic single-station bulletin production[J]. Bull Seismol Soc Am,82(1):221–237.
    Saragiotis C D,Hadjileontiadis L J,Panas S M. 2002. PAI-S/K:A robust automatic seismic P phase arrival identification scheme[J]. IEEE Trans Geosci Remote Sens,40(6):1395–1404. doi: 10.1109/TGRS.2002.800438
    Vidale J E. 1986. Complex polarization analysis of particle motion[J]. Bull Seismol Soc Am,76(5):1393–1405.
    Zhu L J, Peng Z G, McClellan J. 2018. Deep learning for seismic event detection of earthquake aftershocks[C]//52nd Asilomar Conference on Signals, Systems, and Computers. Pacific Grove: IEEE: 1121–1125.
    Zhu W Q,Beroza G C. 2018. PhaseNet:A deep-neural-network-based seismic arrival-time picking method[J]. Geophys Int J,216(1):261–273. doi: 10.1093/gji/ggy42
  • Related Articles

Catalog

    Article views (502) PDF downloads (78) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return