Jiang Z Q,Yang Y H,Chen Q,Xu Q,Xu L,Huang X M. 2022. Afterslip distribution of 2017 Iran MW7.3 earthquake and its triggering effects on the 2018 MW6.0 earthquake. Acta Seismologica Sinica44(3):452−466. DOI: 10.11939/jass.20200140
Citation: Jiang Z Q,Yang Y H,Chen Q,Xu Q,Xu L,Huang X M. 2022. Afterslip distribution of 2017 Iran MW7.3 earthquake and its triggering effects on the 2018 MW6.0 earthquake. Acta Seismologica Sinica44(3):452−466. DOI: 10.11939/jass.20200140

Afterslip distribution of 2017 Iran MW7.3 earthquake and its triggering effects on the 2018 MW6.0 earthquake

More Information
  • Received Date: August 17, 2020
  • Revised Date: December 14, 2020
  • Available Online: December 05, 2021
  • Published Date: June 26, 2022
  • In this study, a set of radar images acquired by the Sentinel-1 satellite that covers the interested seismically-effected area were collected. The time-series surface deformation of the 283-day time span after the 2017 Sarpol Zahab, Iran, MW7.3 earthquake was extracted by using small baseline subset technique, then the two-step procedure inversion is carried out to obtain the afterslip distribution. In order to analyze the triggering effects of the 2017 strong earthquake and its post-seismic faulting on the 2018 Javanrud MW6.0 earthquake, the coseismic deformation field covering the whole MW6.0 earthquake region was obtained by using differential interferometry technique, and the inversion results of seismogenic fault parameters were used as receiving fault parameters for stress calculation. The results show that the post-seismic deformation of the Sarpol Zahab earthquake is mainly dominated by the afterslip effect. 283 days after the earthquake, the accumulative slip of the after-slip model reaches up to 0.7 m. The coseismic source model of the Javanrud MW6.0 earthquake indicates that the seismogenic fault strike is 355.6°, the dip angle is 89.4°, and the rupture of coseismic fault is characterized by the right-lateral strike-slip together with some normal dip-slip component. Moreover, the calculated Coulomb stress change suggests that the MW7.3 earthquake and its afterslip have triggering effect on the subsequent Javanrud MW6.0 earthquake, and the occurrence of Javanrud earthquake could also be contributed by the regional plate activity.
  • 郝平,傅征祥,田勤俭,刘杰,刘桂萍. 2004. 昆仑山口西8.1级地震强余震库仑破裂应力触发研究[J]. 地震学报,26(1):30–37. doi: 10.3321/j.issn:0253-3782.2004.01.004
    Hao P,Fu Z X,Tian Q J,Liu J,Liu G P. 2004. Large aftershocks triggering by Coulomb failure stress following the 2001 MS=8.1 great Kunlun earthquake[J]. Acta Seismologica Sinica,26(1):30–37 (in Chinese).
    贺克锋,赵斌,杜瑞林. 2019. 利用长期GPS数据研究2008年汶川地震震后形变[J]. 大地测量与地球动力学,39(2):122–126.
    He K F,Zhao B,Du R L. 2019. Post-seismic deformation associated with the 2008 Wenchuan earthquake by long-term GPS data[J]. Journal of Geodesy and Geodynamics,39(2):122–126 (in Chinese).
    冀战波,王琼,王海涛,解朝娣. 2014. 2008年新疆于田MS7.3地震对后续地震的完全库仑应力触发作用[J]. 地震学报,36(6):997–1009.
    Ji Z B,Wang Q,Wang H T,Xie C D. 2014. Impact of complete Coulomb failure stress changes of the 2008 Xinjiang Yutian MS7.3 earthquake on the subsequent earthquakes[J]. Acta Seismologica Sinica,36(6):997–1009 (in Chinese).
    李健,詹文欢,朱俊江,孙杰,冯英辞,姜莲婷,郭磊,唐琴琴. 2017. 1990年菲律宾MW7.7级强震对马尼拉俯冲带静态应力触发影响[J]. 海洋地质与第四纪地质,37(6):93–99.
    Li J,Zhan W H,Zhu J J,Sun J,Feng Y C,Jiang L T,Guo L,Tang Q Q. 2017. A preliminary study on static stress triggering effects on Manila subduction zone by the Philippine MW7.7 earthquake 1990[J]. Marine Geology &Quaternary Geology,37(6):93–99 (in Chinese).
    单斌,李佳航,韩立波,房立华,杨嵩,金笔凯,郑勇,熊熊. 2012. 2010年MS7.1级玉树地震同震库仑应力变化以及对2011年MS5.2级囊谦地震的影响[J]. 地球物理学报,55(9):3028–3042. doi: 10.6038/j.issn.0001-5733.2012.09.021
    Shan B,Li J H,Han L B,Fang L H,Yang S,Jin B K,Zheng Y,Xiong X. 2012. Coseismic Coulomb stress change caused by 2010 MS=7.1 Yushu earthquake and its influence to 2011 MS=5.2 Nangqên earthquake[J]. Chinese Journal of Geophysics,55(9):3028–3042 (in Chinese).
    万永革,吴忠良,周公威,黄静. 2000. 几次复杂地震中不同破裂事件之间的“应力触发”问题[J]. 地震学报,22(6):568–576. doi: 10.3321/j.issn:0253-3782.2000.06.002
    Wan Y G,Wu Z L,Zhou G W,Huang J. 2000. “Stress triggering” between different rupture events in several earthquakes[J]. Acta Seismologica Sinica,22(6):568–576 (in Chinese).
    万永革,沈正康,兰从欣. 2005. 兰德斯地震断层面及其附近余震产生的位移场研究[J]. 地震学报,27(2):139–146. doi: 10.3321/j.issn:0253-3782.2005.02.003
    Wan Y G,Shen Z K,Lan C X. 2005. Study on displacement field generated by aftershocks in Landers seismic fault plane and its adjacent areas[J]. Acta Seismologica Sinica,27(2):139–146 (in Chinese).
    万永革,沈正康,盛书中,徐晓枫. 2009. 2008年汶川大地震对周围断层的影响[J]. 地震学报,31(2):128–139. doi: 10.3321/j.issn:0253-3782.2009.02.002
    Wan Y G,Shen Z K,Sheng S Z,Xu X F. 2009. The influence of 2008 Wenchuan earthquake on surrounding faults[J]. Acta Seismologica Sinica,31(2):128–139 (in Chinese).
    文磊,张光亚,李曰俊,温志新,张强,赵岩. 2015. 扎格罗斯褶皱冲断带构造变形特征[J]. 地质科学,50(2):653–664. doi: 10.3969/j.issn.0563-5020.2015.02.020
    Wen L,Zhang G Y,Li Y J,Wen Z X,Zhang Q,Zhao Y. 2015. Structure-deformation features of the Zagros fold and thrust belt[J]. Chinese Journal of Geology,50(2):653–664 (in Chinese).
    杨百存,秦四清,薛雷,张珂. 2018. 2017年伊拉克MW7.3地震的类型界定及其震后趋势分析[J]. 地球物理学报,61(2):616–624. doi: 10.6038/cjg2018L0737
    Yang B C,Qin S Q,Xue L,Zhang K. 2018. Identification of seismic type of 2017 Iraq MW7.3 earthquake and analysis of its post-quake trend[J]. Chinese Journal of Geophysics,61(2):616–624 (in Chinese).
    张庆云,李永生,张景发. 2020. 2017年伊朗MW7.3地震震源机制反演及三维形变场获取[J]. 武汉大学学报(信息科学版),45(2):196–204.
    Zhang Q Y,Li Y S,Zhang J F. 2020. Focal mechanism inversion and 3D deformation field acquisition of Iran MW7.3 earthquake in 2017[J]. Geomatics and Information Science of Wuhan University,45(2):196–204 (in Chinese).
    Deng J S,Sykes L R. 1997. Evolution of the stress field in southern California and triggering of moderate-size earthquakes:A 200-year perspective[J]. J Geophys Res,102(B5):9859–9886. doi: 10.1029/96JB03897
    European Space Agency. 2014. ASF data search vertex[DB/OL]. [2019-09-20]. https://search.asf.alaska.edu/#/.
    Feng W P,Samsonov S,Almeida R,Yassaghi A,Li J H,Qiu Q,Li P,Zheng W J. 2018. Geodetic constraints of the 2017 MW7.3 Sarpol Zahab,Iran earthquake,and its implications on the structure and mechanics of the northwest Zagros thrust-fold belt[J]. Geophys Res Lett,45(14):6853–6861. doi: 10.1029/2018GL078577
    Guo R M,Zheng Y,Xu J Q,Riaz M S. 2019. Transient viscosity and afterslip of the 2015 MW8.3 Illapel,Chile,earthquake[J]. Bull Seismol Soc Am,109(6):2567–2581. doi: 10.1785/0120190114
    Hatzfeld D,Molnar P. 2010. Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan Plateaus and geodynamic implications[J]. Rev Geophys,48(2):RG2005.
    He P,Wen Y M,Xu C J,Chen Y G. 2019. High-quality three-dimensional displacement fields from new-generation SAR imagery:Application to the 2017 Ezgeleh,Iran,earthquake[J]. J Geod,93(4):573–591. doi: 10.1007/s00190-018-1183-6
    Hsu Y J,Simons M,Avouac J P,Galetzka J,Sieh K,Chlieh M,Natawidjaja D,Prawirodirdjo L,Bock Y. 2006. Frictional afterslip following the 2005 Nias-Simeulue earthquake,Sumatra[J]. Science,312(5782):1921–1926. doi: 10.1126/science.1126960
    Jahani S,Callot J P,Letouzey J,Frizon de Lamotte D. 2009. The eastern termination of the Zagros fold-and-thrust belt,Iran:Structures,evolution,and relationships between salt plugs,folding,and faulting[J]. Tectonics,28(6):217–234.
    Jónsson S,Segall P,Pedersen R,Björnsson G. 2003. Post-earthquake ground movements correlated to pore-pressure transients[J]. Nature,424(6945):179–183. doi: 10.1038/nature01776
    King G C P,Stein R S,Lin J. 1994. Static stress changes and the triggering of earthquakes[J]. Bull Seismol Soc Am,84(3):935–953.
    Lin J,Stein R S. 2004. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults[J]. J Geophys Res,109(B2):B02303.
    Lohman R B, Simons M. 2005. Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data down sampling[J]. Geochem Geophys Geosyst, 6(1): Q01007.
    Marone C J,Scholtz C H,Bilham R. 1991. On the mechanics of earthquake afterslip[J]. J Geophys Res,96(B5):8441–8452. doi: 10.1029/91JB00275
    Mora O,Mallorqui J J,Broquetas A. 2003. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images[J]. IEEE Trans Geosci Remote Sens,41(10):2243–2253. doi: 10.1109/TGRS.2003.814657
    Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Am,75(4):1135–1154. doi: 10.1785/BSSA0750041135
    Peltzer G,Rosen P,Rogez F,Hudnut K. 1998. Poroelastic rebound along the Landers 1992 earthquake surface rupture[J]. J Geophys Res:Solid Earth,103(B12):30131–30145. doi: 10.1029/98JB02302
    Taymaz T, Nilfouroushan F, Yolsal-Çevikbilen S, Eken T. 2018. Co-seismic crustal deformation of the 12 November 2017 MW7.4 Sar-Pol-Zahab (Iran) earthquake: Integration of analysis based on DInSAR and seismological observations[C]//Proceedings of 2018 EGU General Assembly. Vienna, Austria: EGU2018-4186-6.
    USGS. 2017. M7.3: 29 km S of Halabjah, Iraq[EB/OL]. [2020-07-15]. https://earthquake.usgs.gov/earthquakes/eventpage/us2000bmcg/moment-tensor.
    USGS. 2018. M6.0: 32 km SW of Javanrud, Iran[EB/OL]. [2020-07-15]. https://earthquake.usgs.gov/earthquakes/eventpage/us1000ghda/moment-tensor.
    Yang C S,Han B Q,Zhao C Y,Du J T,Zhang D X,Zhu S N. 2019. Co- and post-seismic deformation mechanisms of the MW7.3 Iran earthquake (2017) revealed by Sentinel-1 InSAR observations[J]. Remote Sens,11(4):418. doi: 10.3390/rs11040418
    Yang Y H,Chen Q,Xu Q,Liu G X,Hu J C. 2018a. Source model and Coulomb stress change of the 2015 MW7.8 Gorkha earthquake determined from improved inversion of geodetic surface deformation observations[J]. J Geod,93(3):333–351.
    Yang Y H,Hu J C,Yassaghi A,Tsai M C,Zare M,Chen Q,Wang Z G,Rajabi A M,Kamranzad F. 2018b. Midcrustal thrusting and vertical deformation partitioning constraint by 2017 MW7.3 Sarpol Zahab earthquake in Zagros mountain belt,Iran[J]. Seismol Res Lett,89(6):2204–2213. doi: 10.1785/0220180022
    Zhao B,Bürgmann R,Wang D,Tan K,Du R,Zhang R. 2017. Dominant controls of downdip afterslip and viscous relaxation on the postseismic displacements following the MW7.9 Gorkha,Nepal,earthquake[J]. J Geophys Res:Solid Earth,122(10):8376–8401. doi: 10.1002/2017JB014366
  • Related Articles

  • Cited by

    Periodical cited type(10)

    1. Xinglin Lei,Zhiwei Wang,Shengli Ma,Changrong He. Step-over of strike-slip faults and overpressure fluid favor occurrence of foreshocks: Insights from the 1975 Haicheng fore-main-aftershock sequence, China. Earthquake Research Advances. 2024(01): 36-46 .
    2. 杨士超,王亮,孙庆山,焦明若,钱蕊. sPL震相在海城地区震源深度测定中的应用. 大地测量与地球动力学. 2023(05): 523-528 .
    3. 钱蕊,王亮,张志宏,杨士超,夏彩韵. 辽宁海城地震窗开窗指标及效能分析. 防灾减灾学报. 2019(03): 84-91 .
    4. 郑确,刘财,田有,朱洪翔. 辽宁省中上地壳双差层析成像及海城地震(Ms 7.3)发震构造解释(英文). Applied Geophysics. 2018(01): 125-136+150 .
    5. 郑确,刘财,田有. 辽宁海城及其邻区地震b值空间分布特征. 吉林大学学报(地球科学版). 2018(03): 922-933 .
    6. 阎春恒,周斌,郭培兰,孙学军,文翔. 结合波形互相关技术的龙滩水库地震双差定位. 地震研究. 2016(03): 427-435 .
    7. 张洪艳,张广伟,王晓山,盛俭,卢燕红,张宇. 2013年吉林前郭5.8级震群精定位及发震构造分析. 中国地震. 2015(03): 518-528 .
    8. 刘财,郑确,田有,柳云龙,冯晅. 辽宁海城及其邻区地震活动性研究. 吉林大学学报(地球科学版). 2014(04): 1348-1356 .
    9. 王亮,周龙泉,焦明若,曹凤娟,翟丽娜. 海城盖州地区速度结构和震源位置的联合反演研究. 地震. 2014(03): 13-26 .
    10. 包丰,倪四道,赵建和,谢军,陈伟文,曾祥方. 时钟不准情形地震精确定位研究——以2011年1月19日安庆地震序列为例. 地震学报. 2013(02): 160-172 . 本站查看

    Other cited types(6)

Catalog

    Article views (894) PDF downloads (136) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return