Volume 43 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Ba Z N,Zhang E W,Liang J W,Rong M S. 2021. Study on 2D in-plane HVSR simulation and application with transverse inhomogeneous body scattering. Acta Seismologica Sinica,43(6):753−767 doi: 10.11939/jass.20200177
Citation: Ba Z N,Zhang E W,Liang J W,Rong M S. 2021. Study on 2D in-plane HVSR simulation and application with transverse inhomogeneous body scattering. Acta Seismologica Sinica43(6):753−767 doi: 10.11939/jass.20200177

Study on 2D in-plane HVSR simulation and application with transverse inhomogeneous body scattering

doi: 10.11939/jass.20200177
  • Received Date: 2020-10-25
  • Rev Recd Date: 2021-01-11
  • Available Online: 2021-12-06
  • Publish Date: 2021-12-31
  • In order to analyze the significant influence of lateral inhomogeneity of site on horizontal-to-vertical spectral ratio (HVSR) curves, the diffuse field approach proposed by Sánchez-Sesma et alwas adopted to simulate the HVSR curves of 2-D sediment topography by calculating the imaginary part of Green’s functions of total wave field. The imaginary part of Green’s functions was solved by the dynamic stiffness matrix and in-plane inclined Green’s functions based on the indirect boundary element method (IBEM). The HVSR curves of 2-D sediment topographies and corresponding 1-D layered half-space were compared, the influences of sediment topography shapes and the relative position of calculation points on the HVSR curve were discussed in detail. The results show that the effect of impedance ratio between inside and outside materials of sediment topography on HVSR is the most significant; With the increase of the impedance ratio and the slopes of the interface on the sediment side, the frequencies of the first peak of HVSR curves increase significantly, which can be up to 3.3 times of the corresponding layered half-space results, simultaneously, platform emerges on HVSR curves; Amplitudes of HVSR curves in high frequency band increase with the decrease of distances from the calculation points to the sediment boundary. According to the results obtained in this study, the HVSR method can be used to preliminarily determine the place where local sediment topography exists. From this aspect, the cost of regional geophysical investigation can be reduced visibly via HVSR method.


  • loading
  • [1]
    Lin G L,Zhang Q,Cui J W,Zhao K,Yang L W. 2019. Determining the site effects of the 2014 Ludian MS6.5 earthquake using HVSR microtremor method[J]. Journal of Seismological Research,42(4):531–537 (in Chinese).
    Lu Y X,Liu K,Wang L,Wei L,Li S H. 2017. Site effect of unconsolidated soil hill based on seismic array records[J]. Acta Seismologica Sinica,39(6):941–954 (in Chinese).
    Rong M S,Li X J,Wang Z M,Lü Y J. 2016. Applicability of HVSR in an analysis of site-effects caused by earthquakes[J]. Chinese Journal of Geophysics,59(8):2878–2891 (in Chinese).
    Rong M S,Fu L Y,Li X J. 2018. Inversion of site velocity structure using a hybrid global optimization algorithm based on HVSRs of accelerograms recorded by a single station[J]. Chinese Journal of Geophysics,61(3):938–947 (in Chinese).
    Wang W J,Chen Q F,Qi C,Tan Y P,Zhang X,Zhou Q Y. 2011. The feasibilities and limitations to explore the near-surface structure with microtremor HVSR method:A case in Baoding area of Hebei Province,China[J]. Chinese Journal of Geophysics,54(7):1783–1797 (in Chinese).
    Wen R Z,Ji K,Ren Y F,Wang H W. 2015. Site classification for strong earthquake stations in China using spectral ratio method[J]. Chinese Journal of Rock Mechanics and Engineering,34(6):1236–1241 (in Chinese).
    Arai H,Tokimatsu K. 2004. S-wave velocity profiling by inversion of microtremor H/V spectrum[J]. Bull Seismol Soc Am,94(1):53–63. doi: 10.1785/0120030028
    Chavez-Gárcía F J,Rodríguez M,Field E,Hatzfeld D. 1997. Topographic site effects:A comparison of two nonreference methods[J]. Bull Seismol Soc Am,87(6):1667–1673. doi: 10.1785/BSSA0870061667
    Gosar A. 2007. Microtremor HVSR study for assessing site effects in the Bovec basin (NW Slovenia) related to 1998 MW5.6 and 2004 MW5.2 earthquakes[J]. Eng Geol,91(2/3/4):178–193.
    Guéguen P,Cornou C,Garambois S,Banton J. 2007. On the limitation of the H/V spectral ratio using seismic noise as an exploration tool:Application to the Grenoble Valley (France),a small apex ratio basin[J]. Pure Appl Geophys,164(1):115–134. doi: 10.1007/s00024-006-0151-x
    Kawase H,Sánchez-Sesma F J,Matsushima S. 2011. The optimal use of horizontal-to-vertical spectral ratios of earthquake motions for velocity inversions based on diffuse-field theory for plane waves[J]. Bull Seismol Soc Am,101(5):2001–2014. doi: 10.1785/0120100263
    Matsushima S,Hirokawa T,De Martin F,Kawase H,Sánchez-Sesma F J. 2014. The effect of lateral heterogeneity on horizontal-to-vertical spectral ratio of microtremors inferred from observation and synthetics[J]. Bull Seismol Soc Am,104(1):381–393. doi: 10.1785/0120120321
    Nakamura Y. 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface[J]. Quarterly Reports Railway Tech Res Inst,30(1):25–33.
    Napolitano F,Gvasi A,La Rocca M L,Guerra I,Scarpa R. 2018. Site effects in the Pollino region from the HVSR and polarization of seismic noise and earthquakes[J]. Bull Seismol Soc Am,108(1):309–321. doi: 10.1785/0120170197
    Nogoshi M,Igarashi T. 1971. On the amplitude characteristics of microtremor:Part 2[J]. Seism Soc Jap,24:26–40.
    Perton M,Sánchez-Sesma F J,Rodríguez-Castellanos A,Campillo M,Weaver R L. 2009. Two perspectives on equipartition in diffuse elastic fields in three dimensions[J]. J Acoust Soc Am,126(3):1125–1130. doi: 10.1121/1.3177262
    Perton M,Sánchez-Sesma F J. 2016. Green's function calculation from equipartition theorem[J]. J Acoust Soc Am,140(2):1309–1318. doi: 10.1121/1.4961208
    Perton M,Spica Z,Caudron C. 2018. Inversion of the horizontal-to-vertical spectral ratio in presence of strong lateral heterogeneity[J]. Geophys J Int,212(2):930–941. doi: 10.1093/gji/ggx458
    Piña-Flores J,Perton M,García-Jerez A,Carmona E,Luzón F,Molina-Villegas J C,Sánchez-Sesma F J. 2017. The inversion of spectral ratio H/V in a layered system using the diffuse field assumption (DFA)[J]. Geophys J Int,208(1):577–588. doi: 10.1093/gji/ggw416
    Sánchez-Sesma F J,Campillo M. 2006. Retrieval of the Green’s function from cross correlation:The canonical elastic problem[J]. Bull Seismol Soc Am,96(3):1182–1191. doi: 10.1785/0120050181
    Sánchez-Sesma F J,Pérez-Ruiz J A,Luzón F,Campillo M,Rodríguez-Castellanos A. 2008. Diffuse fields in dynamic elasticity[J]. Wave Motion,45(5):641–654. doi: 10.1016/j.wavemoti.2007.07.005
    Sánchez-Sesma F J,Rodríguez M,Iturrarán-Viveros U,Luzón F,Campillo M,Margerin L,García-Jerez A,Suarez M,Santoyo M A,Rodríguez-Castellanos A. 2011. A theory for microtremor H/V spectral ratio:Application for a layered medium[J]. Geophys J Int,186(1):221–225. doi: 10.1111/j.1365-246X.2011.05064.x
    Sánchez-Sesma F J. 2017. Modeling and inversion of the microtremor H/V spectral ratio:Physical basis behind the diffuse field approach[J]. Earth Planets Space,69(1):92. doi: 10.1186/s40623-017-0667-6
    Stanko D,Markušić S,Strelec S,Gazdek M. 2017. HVSR analysis of seismic site effects and soil-structure resonance in Varaždin city (North Croatia)[J]. Soil Dyn Earthq Eng,92:666–677. doi: 10.1016/j.soildyn.2016.10.022
    Uebayashi H. 2003. Extrapolation of irregular subsurface structures using the horizontal-to-vertical spectral ratio of long-period microtremors[J]. Bull Seismol Soc Am,93(2):570–582. doi: 10.1785/0120020137
    Uebayashi H,Kawabe H,Kamae K. 2012. Reproduction of microseism H/V spectral features using a three-dimensional complex topographical model of the sediment-bedrock interface in the Osaka sedimentary basin[J]. Geophys J Int,189(2):1060–1074. doi: 10.1111/j.1365-246X.2012.05408.x
    Weaver R L. 1982. On diffuse waves in solid media[J]. J Acoust Soc Am,71(6):1608–1609. doi: 10.1121/1.387816
    Weaver R L. 1985. Diffuse elastic waves at a free surface[J]. J Acoust Soc Am,78(1):131–136. doi: 10.1121/1.392576
    Wolf J P. 1985. Dynamic Soil-Structure Interaction[M]. Englewood Cliffs: Prentice-Hall.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views (150) PDF downloads(30) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint