Volume 44 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Liu J D,Ding Z F,Wu Y,Jiang L. 2022. Crustal thickness and Poisson’s ratio of orogenic belts in northern North China Craton using teleseismic receiver functions. Acta Seismologica Sinica,44(3):357−373 doi: 10.11939/jass.20210001
Citation: Liu J D,Ding Z F,Wu Y,Jiang L. 2022. Crustal thickness and Poisson’s ratio of orogenic belts in northern North China Craton using teleseismic receiver functions. Acta Seismologica Sinica44(3):357−373 doi: 10.11939/jass.20210001

Crustal thickness and Poisson’s ratio of orogenic belts in northern North China Craton using teleseismic receiver functions

doi: 10.11939/jass.20210001
  • Received Date: 2021-01-04
  • Rev Recd Date: 2021-05-31
  • Available Online: 2022-04-08
  • Publish Date: 2022-06-27
  • The thickness and Poisson’s ratio of crust of the North China Craton (NCC) are of great significance to the study of lithospheric evolution of the North China Craton. We collected receiver functions from 115 broadband seismic stations and six very broadband seismic stations on the Taihang-Yanshan orogenic belt and its adjacent areas in the northern North China Craton recorded from October 2006 to September 2009. First we used predictive deconvolution method to eliminate the influence of sedimentary on receiver function waveform. Then the effects of S wave azimuthal anisotropy and interfaces dipping were corrected by using H-κ-c stacking method. Finally, the thickness and Poisson’s ratio of research area were obtained. Our results are featured by lateral variation. The crust thickness in the research area is thick in the western block and thin in the eastern block, and is highly correlated to the topography, which is consistence with Airy isostasy. The low Poisson’s ratio of western block represent relative stability of the crust, the distribution of Poisson’s ratio in central orogenic belt and eastern block is inhomogeneous, suggests that the complex transformation process has been suffered in the crust. Combined with the previous research results, we speculate that there existed partial melting and mantle upwelling in the lower crust of Huailai-Yanqing basin and southern Tangshan, and lower crust detachment might have occurred on the north of Shijiazhuang, and the lower crust of Baoding-Fangshan may have been suffered mantle upwelling under the influence of extension after its detachment. The different crust structures of different areas result in the differences of crustal thickness and Poisson’s ratio distribution which are obtained by H-κ-c stacking as well as H-κ stacking.

     

  • loading
  • [1]
    Chang L J,Wang C Y,Ding Z F. 2012. Upper mantle anisotropy beneath North China[J]. Chinese Journal of Geophysics,55(3):886–896 (in Chinese).
    [2]
    Duan Y H,Wang F Y,Zhang X K,Lin J Y,Liu Z,Liu B F,Yang Z X,Guo W B,Wei Y H. 2016. Three-dimensional crustal velocity structure model of the middle-eastern North China Craton (HBCrust1.0)[J]. Science China Earth Sciences,59(7):1477–1488. doi: 10.1007/s11430-016-5301-0
    [3]
    Fang L H,Wu J P. 2009. Effects of dipping boundaries and anisotropic media on receiver functions[J]. Progress in Geophysics,24(1):42–50 (in Chinese).
    [4]
    Fang L H,Wu J P,Wang W L,Wang C Z,Yang T. 2013. Love wave tomography from ambient seismic noise in North-China[J]. Chinese Journal of Geophysics,56(7):2268–2279 (in Chinese).
    [5]
    Gao Z W,Xu J,Song C Q,Sun J B. 2001. The segmental character of Zhangjiakou-Penglai fault[J]. North China Earthquake Sciences,19(1):35–42 (in Chinese).
    [6]
    Ge C,Zheng Y,Xiong X. 2011. Study of crustal thickness and Poisson ratio of the North China Craton[J]. Chinese Journal of Geophysics,54(10):2538–2548 (in Chinese).
    [7]
    Gu G X. 1983. Catalogue of Chinese Earthquakes, 1831BC—1969AD[M]. Beijing: China Science Publishing & Media Ltd: 665–685 (in Chinese).
    [8]
    He C S,Zhu L P,Ding Z F,Pan J S. 2010. Sedimentary cover in the Bohai Basin using teleseismic receiver function[J]. Acta Geologica Sinica,84(5):716–722 (in Chinese).
    [9]
    Ji S C,Wang Q,Yang W C. 2009. Correlation between crustal thickness and Poisson’s ratio in the North China Craton and its implication for lithospheric thinning[J]. Acta Geologica Sinica,83(3):324–330 (in Chinese).
    [10]
    Liu Q L,Wang C Y,Yao Z X,Chang L J,Lou H. 2011. Study on crustal thickness and velocity ratio in mid-western North China Craton[J]. Chinese Journal of Geophysics,54(9):2213–2224 (in Chinese).
    [11]
    Luo Y,Chong J J,Ni S D,Chen Q F,Chen Y. 2008. Moho depth and sedimentary thickness in Capital region[J]. Chinese Journal of Geophysics,51(4):1135–1145 (in Chinese).
    [12]
    Qi G. 2014. The Crustal Thickness and Poisson’s Ratio in the Junction of the Taihangshan Region and the Yanshan Tectonic Belt[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 31–34 (in Chinese).
    [13]
    Qi G,Chen Q F. 2015. Distribution of the crustal thickness and Poisson’s ratio beneath the junction of the Taihangshan and the Yanshan tectonic belts[J]. Chinese Journal of Geophysics,58(9):3239–3250 (in Chinese).
    [14]
    Qu Z D,Zhang X H,He R Z,Wu Z Q,Zhang H S,Wu W. 2018. S wave velocity structure of the crust and the mechanisms of earthquake occurrence in the North China basin and its adjacent areas[J]. Progress in Geophysics,33(3):957–968 (in Chinese).
    [15]
    Tan P,Chen Y,Sun W Z,Li W,Tang G B,Cui T. 2018. An improved H-κ-θ stacking method to determine the crustal thickness and bulk vP/vS ratios in the case of a slant Moho interface[J]. Chinese Journal of Geophysics,61(9):3689–3700 (in Chinese).
    [16]
    Tang X G. 2009. Isostatic gravity study of Ordos block[J]. Chinese Journal of Engineering Geophysics,6(4):395–398 (in Chinese).
    [17]
    Tian B F,Li J,Wang W M,Zhao L F,Yao Z X. 2008. Crust anisotropy of Taihangshan mountain range in North China inferred from receiver functions[J]. Chinese Journal of Geophysics,51(5):1459–1467 (in Chinese).
    [18]
    Wei Z G,Chu R S,Chen L. 2015. Regional differences in crustal structure of the North China Craton from receiver functions[J]. Science China Earth Sciences,58(12):2200–2210 (in Chinese).
    [19]
    Wu F Y,Ge W C,Sun D Y,Guo C L. 2003. Discussions on the lithospheric thinning in eastern China[J]. Earth Science Frontiers,10(3):51–60 (in Chinese).
    [20]
    Wu F Y,Li X H,Yang J H,Zheng Y F. 2007. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica,23(6):1217–1238 (in Chinese).
    [21]
    Wu Y. 2011. The Structure of the Crust and Upper Mantle in North China Craton From Teleseismic Receiver Function[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 27–28 (in Chinese).
    [22]
    Wu Y,Ding Z F,Zhu L P. 2014. Sedimentary basin structure of the Bohai Bay from teleseismic receiver functions[J]. Acta Seismologica Sinica,36(5):837–849 (in Chinese).
    [23]
    Wu Y,Ding Z F,Wang X C,Zhu L P. 2018. Crustal structure and geodynamics of the North China Craton derived from a receiver function analysis of seismic wave data[J]. Chinese Journal of Geophysics,61(7):2705–2718 (in Chinese).
    [24]
    Xu W W,Zheng T Y. 2005. Distribution of Poisson’s ratios in the northwestern basin-mountain boundary of the Bohai Bay Basin[J]. Chinese Journal of Geophysics,48(5):1077–1084 (in Chinese).
    [25]
    Yang Y,Yao H J,Zhang P,Chen L. 2018. Crustal azimuthal anisotropy in the Trans-North China Orogen and adjacent regions from receiver functions[J]. Science China Earth Sciences,61(7):903–913. doi: 10.1007/s11430-017-9209-9
    [26]
    Zhang Y. 2019. Study of the Crust-Mantle Discontinuity Structure in Eastern China With Receiver Function Method[D]. Beijing: China University of Geosciences (Beijing): 61–67 (in Chinese).
    [27]
    Zhang Y Y,Gao Y,Shi Y T,Liu K. 2015. Crustal thickness and Poisson’s ratio beneath Zhangjiakou-Bohai seismic active belt and its neighboring regions[J]. Acta Seismologica Sinica,37(4):541–553 (in Chinese).
    [28]
    Zhu H X,Tian Y,Liu C,Feng X. 2018. Estimation of the crustal structure beneath the sedimentary basin:Predictive deconvolution method to remove multiples reverberations of the receiver function[J]. Chinese Journal of Geophysics,61(9):3664–3675 (in Chinese).
    [29]
    Zhu R X,Xu Y G,Zhu G,Zhang H F,Xia Q K,Zheng T Y. 2012. Destruction of the North China Craton[J]. Science China Earth Sciences,55(10):1565–1587. doi: 10.1007/s11430-012-4516-y
    [30]
    Bondár I,Storchak D. 2011. Improved location procedures at the International Seismological Centre[J]. Geophys J Int,186(3):1220–1244. doi: 10.1111/j.1365-246X.2011.05107.x
    [31]
    Chen L,Tao W,Zhao L,Zheng T Y. 2008. Distinct lateral variation of lithospheric thickness in the northeastern North China Craton[J]. Earth Planet Sci Let,267(1/2):56–68.
    [32]
    Cheng C,Chen L,Yao H J,Jiang M M,Wang B Y. 2013. Distinct variations of crustal shear wave velocity structure and radial anisotropy beneath the North China Craton and tectonic implications[J]. Gondwana Res,23(1):25–38. doi: 10.1016/j.gr.2012.02.014
    [33]
    Christensen N I. 1996. Poisson’s ratio and crustal seismology[J]. J Geophys Res,101(B2):3139–3156. doi: 10.1029/95JB03446
    [34]
    Efron B,Tibshirani R. 1986. Bootstrap methods for standard errors,confidence intervals,and other measures of statistical accuracy[J]. Stat Sci,1(1):54–75.
    [35]
    Fu Y V,Gao Y,Li A B,Lu L Y,Shi Y T,Zhang Y. 2016. The anisotropic structure in the crust in the northern part of North China from ambient seismic noise tomography[J]. Geophys J Int,204(3):1649–1661. doi: 10.1093/gji/ggv549
    [36]
    Gao Y,Wu J,Yi G X,Shi Y T. 2010. Crust-mantle coupling in North China:Preliminary analysis from seismic anisotropy[J]. Chinese Science Bulletin,55(31):3599–3605. doi: 10.1007/s11434-010-4135-y
    [37]
    He C S,Dong S W,Santosh M,Li Q S,Chen X H. 2015. Destruction of the North China Craton:A perspective based on receiver function analysis[J]. Geol J,50(1):93–103. doi: 10.1002/gj.2530
    [38]
    Huang J L,Zhao D P. 2009. Seismic imaging of the crust and upper mantle under Beijing and surrounding regions[J]. Phys Earth Planet Inter,173(3/4):330–348.
    [39]
    Jia S X,Wang F Y,Tian X F,Duan Y H,Zhang J S,Liu B F,Lin J Y. 2014. Crustal structure and tectonic study of North China Craton from a long deep seismic sounding profile[J]. Tectonophysics,627:48–56. doi: 10.1016/j.tecto.2014.04.013
    [40]
    Kennett B L N,Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification[J]. Geophys J Int,105(2):429–465. doi: 10.1111/j.1365-246X.1991.tb06724.x
    [41]
    Langston C A. 1979. Structure under Mount Rainier,Washington,inferred from teleseismic body waves[J]. J Geophys Res,84(B9):4749–4762. doi: 10.1029/JB084iB09p04749
    [42]
    Levin V,Park J. 1997. Crustal anisotropy in the Ural Mountains foredeep from teleseismic receiver functions[J]. Geophys Res Lett,24(11):1283–1286. doi: 10.1029/97GL51321
    [43]
    Li J T,Song X D,Wang P,Zhu L P. 2019. A generalized H-κ method with harmonic corrections on Ps and its crustal multiples in receiver functions[J]. J Geophys Res:Solid Earth,124(4):3782–3801. doi: 10.1029/2018JB016356
    [44]
    Ligorría J P,Ammon C J. 1999. Iterative deconvolution and receiver-function estimation[J]. Bull Seismol Soc Am,89(5):1395–1400. doi: 10.1785/BSSA0890051395
    [45]
    Owens T J,Crosson R S. 1988. Shallow structure effects on broadband teleseismic P waveforms[J]. Bull Seismol Soc Am,78(1):96–108. doi: 10.1785/BSSA0780010096
    [46]
    Pavlis N K,Holmes S A,Kenyon S C,Factor J K. 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)[J]. J Geophys Res,117(B4):B04406.
    [47]
    Tang Y C,Chen Y J,Zhou S Y,Ning J Y,Ding Z F. 2013. Lithosphere structure and thickness beneath the North China Craton from joint inversion of ambient noise and surface wave tomography[J]. J Geophys Res:Solid Earth,118(5):2333–2346. doi: 10.1002/jgrb.50191
    [48]
    Wessel P,Smith W H F,Scharroo R,Luis J,Wobbe F. 2013. Generic mapping tools:Improved version released[J]. Eos Trans Am Geophys Union,94(45):409–410.
    [49]
    Yeck W L,Sheehan A F,Schulte-Pelkum V. 2013. Sequential H-κ stacking to obtain accurate crustal thicknesses beneath sedimentary basins[J]. Bull Seismol Soc Am,103(3):2142–2150. doi: 10.1785/0120120290
    [50]
    Yu Y Q,Song J G,Liu K H,Gao S S. 2015. Determining crustal structure beneath seismic stations overlying a low-velocity sedimentary layer using receiver functions[J]. J Geophys Res:Solid Earth,120(5):3208–3218. doi: 10.1002/2014JB011610
    [51]
    Yuan X H,Ni J,Kind R,Mechie J,Sandvol E. 1997. Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment[J]. J Geophys Res,102(B12):27491–27500. doi: 10.1029/97JB02379
    [52]
    Zandt G,Ammon C J. 1995. Continental crust composition constrained by measurements of crustal Poisson’s ratio[J]. Nature,374(6518):152–154. doi: 10.1038/374152a0
    [53]
    Zhang C,Yao H J,Liu Q Y,Zhang P,Yuan Y O,Feng J K,Fang L H. 2018. Linear array ambient noise adjoint tomography reveals intense crust-mantle interactions in North China Craton[J]. J Geophys Res:Solid Earth,123(1):368–383. doi: 10.1002/2017JB015019
    [54]
    Zhang P,Yao H J,Chen L,Fang L H,Wu Y,Feng J K. 2019. Moho depth variations from receiver function imaging in the northeastern North China Craton and its tectonic implications[J]. J Geophys Res:Solid Earth,124(2):1852–1870. doi: 10.1029/2018JB016122
    [55]
    Zhang Y,Huang J L. 2019. Structure of the sediment and crust in the northeast North China Craton from improved sequential H-κ stacking method[J]. Open Geosci,11(1):682–696. doi: 10.1515/geo-2019-0054
    [56]
    Zhao G C,Wilde S A,Cawood P A,Lu L Z. 1998. Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting[J]. Int Geol Rev,40(8):706–721. doi: 10.1080/00206819809465233
    [57]
    Zhao G C,Wilde S A,Cawood P A,Sun M. 2001. Archean blocks and their boundaries in the North China Craton:Lithological,geochemical,structural and P–T path constraints and tectonic evolution[J]. Precambrian Res,107(1/2):45–73.
    [58]
    Zhao G C,Sun M,Wilde S A,Li S Z. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited[J]. Precambrian Res,136(2):177–202. doi: 10.1016/j.precamres.2004.10.002
    [59]
    Zheng T Y,Chen L,Zhao L,Zhu R X. 2007. Crustal structure across the Yanshan belt at the northern margin of the North China Craton[J]. Phys Earth Planet Inter,161(1/2):36–49.
    [60]
    Zheng T, Ding Z F, Ning J Y, Liu K H, Gao S S, Chang L J, Kong F S, Fan X P. 2019. Crustal azimuthal anisotropy beneath the central North China Craton revealed by receiver functions[J]. Geochem, Geophys, Geosyst, 20(5): 2235–2251.
    [61]
    Zhu L P,Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions[J]. J Geophys Res:Solid Earth,105(B2):2969–2980. doi: 10.1029/1999JB900322
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (204) PDF downloads(93) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return