Volume 43 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Zhao D Z,Qu C Y,Shan X J,Zhang G H,Li Y C,Gong W Y,Song X G. 2021. Postseismic deformation observation,mechanism and lithospheric rheology of the central and northern Tibetan Plateau after the 2001 MW7.8 Kunlun earthquake:Insights and challenges. Acta Seismologica Sinica,43(6):804−816 doi: 10.11939/jass.20210058
Citation: Zhao D Z,Qu C Y,Shan X J,Zhang G H,Li Y C,Gong W Y,Song X G. 2021. Postseismic deformation observation,mechanism and lithospheric rheology of the central and northern Tibetan Plateau after the 2001 MW7.8 Kunlun earthquake:Insights and challenges. Acta Seismologica Sinica43(6):804−816 doi: 10.11939/jass.20210058

Postseismic deformation observation,mechanism and lithospheric rheology of the central and northern Tibetan Plateau after the 2001 MW7.8 Kunlun earthquake:Insights and challenges

doi: 10.11939/jass.20210058
  • Received Date: 2021-04-27
  • Rev Recd Date: 2021-07-05
  • Available Online: 2022-01-21
  • Publish Date: 2021-12-31
  • The 2001 MW7.8 Kokoxili earthquake was the largest earthquake in the central and northern part of the Tibetan Plateau in the recent half century. The large coseismic stress disturbance caused by the coseismic rupture drives and controls the significant postseismic deformation following this major earthquake. A decade of geodetic measurements documented large-spatial-scale, long-time-span and time-dependent postseismic deformation and their different evolution processes, and the geodetic measurements also revealed the complex fault kinematics characteristics, friction properties along fault strike and lateral heterogeneity of lithospheric rheological properties/structure in north-central Tibetan Plateau. In this paper, we briefly summarize postseismic deformation observations and their spatiotemporal characteristics of the Kokoxili earthquake based on InSAR time-series and GPS observations on a decadal scale. Particularly, the spatiotemporally dense InSAR observations are deemed as an important supplement to the postseismic GPS observations in this tectonic area. We summarize the models of large-scale postseismic deformation and the revealed postseismic deformation processes, various dynamic mechanisms and their relationships. Finally, we summarize the scientific understanding and unsolved scientific problems associated with the 2001 Kokoxili earthquake in the past 20 years: On the one hand, it is necessary to continuously observe and study the large-scale surface deformation of the Kunlun fault; On the other hand, the postseismic deformation model should be updated continuously to deepen our understanding of the earthquake cycle deformation of the Kunlun fault, the control of regional tectonics on earthquake cycle deformation, and the spatiotemporal evolution mechanism of complex fault movement in this region.

     

  • loading
  • [1]
    Chen J,Chen Y K,Ding G Y,Tian Q J,Wang Z J,Shan X J,Ren J W,Zhao R B,Wang Z C. 2003. Surface rupture zones of the 2001 earthquake MS8.1 west of Kunlun Pass,northern Qinghai-Xizang Plateau[J]. Quaternary Sciences,23(6):629–639 (in Chinese).
    [2]
    He P C,Wang M,Wang Q,Shen Z K. 2018. Rheological structure of lithosphere in northern Tibet inferred from postseismic deformation modeling of the 2001 MW7.8 Kokoxili earthquake[J]. Chinese Journal of Geophysics,61(2):531–544 (in Chinese).
    [3]
    Ren J W,Wang M. 2005. GPS measured crustal deformation of the MS8.1 Kunlun earthquake on November 14th 2001 in Qinghai-Xizang plateau[J]. Quaternary Sciences,25(1):34–44 (in Chinese).
    [4]
    Shao Z G,Fu R S,Xue T X,Huang J H. 2008. The numerical simulation and discussion on mechanism of postseismic deformation after Kunlun MS8.1 earthquake[J]. Chinese Journal of Geophysics,51(3):805–816 (in Chinese).
    [5]
    Tan K,Li J,Wang Q. 2007. Lithospheric rheological structure constrained by geodetic data in Altay[J]. Chinese Journal of Geophysics,50(6):1713–1718 (in Chinese).
    [6]
    Zhang C J,Shi Y L,Ma L. 2009. Numerical simulation of crust rheological property reflected by post-seiemic deformations of Kunlun large earthquake[J]. Rock and Soil Mechanics,30(9):2552–2558 (in Chinese).
    [7]
    Bürgmann R,Dresen G. 2008. Rheology of the lower crust and upper mantle:Evidence from rock mechanics,geodesy,and field observations[J]. Ann Rev Earth Planet Sci,36:531–567. doi: 10.1146/annurev.earth.36.031207.124326
    [8]
    Barbot S,Fialko Y,Bock Y. 2009. Postseismic deformation due to the MW6.0 2004 Parkfield earthquake:Stress-driven creep on a fault with spatially variable rate-and-state friction parameters[J]. J Geophys Res Solid Earth,114(B7):B07405.
    [9]
    Bischoff S H,Flesch L M. 2018. Normal faulting and viscous buckling in the Tibetan Plateau induced by a weak lower crust[J]. Nat Commun,9(1):4952. doi: 10.1038/s41467-018-07312-9
    [10]
    Clark M K,Royden L H. 2000. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow[J]. Geology,28(8):703–706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
    [11]
    Copley A,Avouac J P,Wernicke B P. 2011. Evidence for mechanical coupling and strong Indian lower crust beneath southern Tibet[J]. Nature,472(7341):79–81. doi: 10.1038/nature09926
    [12]
    DeVries P M,Meade B J. 2013. Earthquake cycle deformation in the Tibetan Plateau with a weak mid-crustal layer[J]. J Geophys Res Solid Earth,118(6):3101–3111. doi: 10.1002/jgrb.50209
    [13]
    Diao F Q,Xiong X,Wang R J. 2011. Mechanisms of transient postseismic deformation following the 2001 MW7.8 Kunlun (China) earthquake[J]. Pure and Applied Geophysics,168(5):767–779. doi: 10.1007/s00024-010-0154-5
    [14]
    Freed A M,Bürgmann R. 2004. Evidence of power-law flow in the Mojave desert mantle[J]. Nature,430(6999):548–551. doi: 10.1038/nature02784
    [15]
    Freed A M,Ali S T,Bürgmann R. 2007. Evolution of stress in Southern California for the past 200 years from coseismic,postseismic and interseismic stress changes[J]. Geophys J Int,169(3):1164–1179. doi: 10.1111/j.1365-246X.2007.03391.x
    [16]
    Garthwaite M C,Wang H,Wright T J. 2013. Broadscale interseismic deformation and fault slip rates in the central Tibetan Plateau observed using InSAR[J]. J Geophys Res: Solid Earth,118(9):5071–5083. doi: 10.1002/jgrb.50348
    [17]
    Hilley G E,Bürgmann R,Zhang P Z,Molnar P. 2005. Bayesian inference of plastosphere viscosities near the Kunlun fault,northern Tibet[J]. Geophys Res Lett,32(1):L01302.
    [18]
    Hilley G E,Johnson K M,Wang M,Shen Z K,Bürgmann R. 2009. Earthquake-cycle deformation and fault slip rates in northern Tibet[J]. Geology,37(1):31–34. doi: 10.1130/G25157A.1
    [19]
    Hsu Y J,Simons M,Avouac J P,Galetzka J,Sieh K,Chlieh M,Natawidjaja D,Prawirodirdjo L,Bock Y. 2006. Frictional afterslip following the 2005 Nias-Simeulue earthquake,Sumatra[J]. Science,312(5782):1921–1926. doi: 10.1126/science.1126960
    [20]
    Hussain E,Wright T J,Walters R J,Bekaert D P S,Lloyd R,Hooper A. 2018. Constant strain accumulation rate between major earthquakes on the North Anatolian fault[J]. Nat Commun,9(1):1392. doi: 10.1038/s41467-018-03739-2
    [21]
    Liu S Z,Xu X W,Klinger Y,Nocquet J M,Chen G H,Yu G H,Jónsson S. 2019. Lower crustal heterogeneity beneath the northern Tibetan Plateau constrained by GPS measurements following the 2001 MW7.8 Kokoxili earthquake[J]. J Geophys Res: Solid Earth,124(11):11992–12022. doi: 10.1029/2019JB017732
    [22]
    Ryder I,Bürgmann R,Pollitz F. 2011. Lower crustal relaxation beneath the Tibetan Plateau and Qaidam Basin following the 2001 Kokoxili earthquake[J]. Geophys J Int,187(2):613–630. doi: 10.1111/j.1365-246X.2011.05179.x
    [23]
    Vernant P. 2015. What can we learn from 20 years of interseismic GPS measurements across strike-slip faults?[J]. Tectonophysics,644-645:22–39. doi: 10.1016/j.tecto.2015.01.013
    [24]
    Wen Y M,Li Z H,Xu C J,Ryder I,Bürgmann R. 2012. Postseismic motion after the 2001 MW7.8 Kokoxili earthquake in Tibet observed by InSAR time series[J]. J Geophys Res:Solid Earth,117(B8):B08405.
    [25]
    Wessel P, Smith W H F. 1998. New, improved version of generic mapping tools released. Eos Trans Am Geophys Union, 79(47): 579.
    [26]
    Zhao B,Huang Y,Zhang C H,Wang W,Tan K,Du R N L. 2015. Crustal deformation on the Chinese mainland during 1998-2014 based on GPS data[J]. Geod Geodynam,6(1):7–15. doi: 10.1016/j.geog.2014.12.006
    [27]
    Zhao D Z,Qu C Y,Shan X J,Bürgmann R,Gong W Y,Zhang G H. 2018a. Spatiotemporal evolution of postseismic deformation following the 2001 MW7.8 Kokoxili,China,earthquake from 7 years of InSAR observations[J]. Remote Sens,10(12):1988. doi: 10.3390/rs10121988
    [28]
    Zhao D Z,Qu C Y,Shan X J,Zuo R H,Liu Y H,Gong W Y,Zhang G H. 2018b. Broadscale postseismic deformation and lower crustal relaxation in the central Bayankala Block (central Tibetan Plateau) observed using InSAR data[J]. J Asian Earth Sci,154:26–41. doi: 10.1016/j.jseaes.2017.12.016
    [29]
    Zhao D Z, Qu C Y, Bürgmann R, Gong W Y, Shan X J. 2021. Relaxation of Tibetan lower crust and afterslip driven by the 2001 MW7.8 Kokoxili, China, earthquake constrained by a decade of geodetic measurements[J]. J Geophys Res: Solid Earth, e2020JB021314.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (533) PDF downloads(128) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return