Bao X,Liu J B,Li S T,Wang F. 2022. Seismic response analysis method of offshore site based on the seismic wave input technique of hybrid wave field. Acta Seismologica Sinica44(1):5−14. DOI: 10.11939/jass.20210088
Citation: Bao X,Liu J B,Li S T,Wang F. 2022. Seismic response analysis method of offshore site based on the seismic wave input technique of hybrid wave field. Acta Seismologica Sinica44(1):5−14. DOI: 10.11939/jass.20210088

Seismic response analysis method of offshore site based on the seismic wave input technique of hybrid wave field

More Information
  • Received Date: May 28, 2021
  • Revised Date: July 11, 2021
  • Available Online: March 16, 2022
  • Published Date: March 17, 2022
  • The seismic response analysis of offshore site is the foundation for the seismic safety evaluation of ocean engineering. Seismic wave input is a key part of site seismic response analysis. However, the slope of the offshore site inclines to the ocean, which interacts with the seawater directly, leading to natural difficulties in solving the free wave field and thus provides a challenge to the existing seismic wave input methods based on the free wave fields. In this study, we adopted and improved the seismic wave input method based on the substructure of artificial boundaries, and constructed a hybrid input wave field with the free wave field on two lateral boundaries and the incident wave field on the bottom boundary of the calculation model. On that basis, an offshore site seismic wave input method for vertically incident P and SV waves is proposed. The proposed method avoids calculating the free wave field of irregular offshore sites, therefore it can simplify the seismic response analysis of offshore engineering considering characteristics of offshore site and the soil-structure interaction. Meanwhile, the fluid-structure coupling algorithm based on the acoustic fluid element is used to simulate the dynamic interaction between the offshore site and the seawater, and the fluid dynamic artificial boundary and the uniform viscoelastic artificial boundary element are used to simulate the radiation damping of the infinite fluid and solid medium. On that basis, the dynamic interaction model of offshore site is established. Combine this model with the proposed seismic wave input method based on the hybrid wave field, thereby an overall time-domain analysis method for the seismic response of offshore sites is established. Numerical examples show that the analysis method and numerical model proposed in this study can accurately realize the input of seismic waves in offshore sites, and have good applicability for seismic response analysis of offshore engineering.
  • 宝鑫,刘晶波. 2017. 考虑流-固耦合效应的含液容器动力响应有限元分析方法[J]. 核动力工程,38(2):111–114.
    Bao X,Liu J B. 2017. Dynamic finite element analysis methods for liquid container considering fluid-structure interaction[J]. Nuclear Power Engineering,38(2):111–114 (in Chinese).
    陈苏,周越,李小军,傅磊. 2018. 近海域地震动的时频特征与工程特性[J]. 振动与冲击,37(16):227–233.
    Chen S,Zhou Y,Li X J,Fu L. 2018. Time-frequency and engineering characteristics on offshore ground motion[J]. Journal of Vibration and Shock,37(16):227–233 (in Chinese).
    陈少林,柯小飞,张洪翔. 2019. 海洋地震工程流固耦合问题统一计算框架[J]. 力学学报,51(2):594–606. doi: 10.6052/0459-1879-18-333
    Chen S L,Ke X F,Zhang H X. 2019. A unified computational framework for fluid-solid coupling in marine earthquake engineering[J]. Chinese Journal of Theoretical and Applied Mechanics,51(2):594–606 (in Chinese).
    杜修力. 2009. 工程波动理论与方法[M]. 北京: 科学出版社: 215–216.
    Du X L. 2009. Theories and Methods of Wave Motion for Engineering[M]. Beijing: Science Press: 215–216 (in Chinese).
    冯启民. 1990. 海洋工程场址地震动的分析方法[J]. 地震工程与工程振动,10(1):81–88.
    Feng Q M. 1990. Analytical method of seismic motion at offshore engineering site[J]. Earthquake Engineering and Engineering Vibration,10(1):81–88 (in Chinese).
    胡进军,郑旭,郝彦春,谢礼立. 2017. 俯冲带地震动特征及其衰减规律探讨[J]. 地球物理学报,60(5):1773–1787. doi: 10.6038/cjg20170514
    Hu J J,Zheng X,Hao Y C,Xie L L. 2017. Characterization of strong motion of subduction earthquakes and its attenuation relationship[J]. Chinese Journal of Geophysics,60(5):1773–1787 (in Chinese).
    李小军. 2006. 海域工程场地地震安全性评价的特殊问题[J]. 震灾防御技术,1(2):97–104. doi: 10.3969/j.issn.1673-5722.2006.02.002
    Li X J. 2006. Special problems on evaluation of seismic safety for offshore engineering site[J]. Technology for Earthquake Disaster Prevention,1(2):97–104 (in Chinese).
    刘晶波,吕彦东. 1998. 结构-地基动力相互作用问题分析的一种直接方法[J]. 土木工程学报,31(3):55–64.
    Liu J B,Lü Y D. 1998. A direct method for analysis of dynamic soil-structure interaction[J]. China Civil Engineering Journal,31(3):55–64 (in Chinese).
    刘晶波,谷音,杜义欣. 2006. 一致粘弹性人工边界及粘弹性边界单元[J]. 岩土工程学报,28(9):1070–1075. doi: 10.3321/j.issn:1000-4548.2006.09.004
    Liu J B,Gu Y,Du Y X. 2006. Consistent viscous-spring artificial boundaries and viscous-spring boundary elements[J]. Chinese Journal of Geotechnical Engineering,28(9):1070–1075 (in Chinese).
    刘晶波,宝鑫,谭辉,王建平,郭东. 2017. 波动问题中流体介质的动力人工边界[J]. 力学学报,49(6):1418–1427. doi: 10.6052/0459-1879-17-199
    Liu J B,Bao X,Tan H,Wang J P,Guo D. 2017. Dynamical artificial boundary for fluid medium in wave motion problems[J]. Chinese Journal of Theoretical and Applied Mechanics,49(6):1418–1427 (in Chinese).
    刘晶波,谭辉,宝鑫,王东洋,李述涛. 2018. 土-结构动力相互作用分析中基于人工边界子结构的地震波动输入方法[J]. 力学学报,50(1):32–43. doi: 10.6052/0459-1879-17-336
    Liu J B,Tan H,Bao X,Wang D Y,Li S T. 2018. The seismic wave input method for soil-structure dynamic interaction analysis based on the substructure of artificial boundaries[J]. Chinese Journal of Theoretical and Applied Mechanics,50(1):32–43 (in Chinese).
    荣棉水,李小军,卢滔,黄雅虹,吕悦军. 2013. 对含厚软表层海域工程场地设计地震动参数确定的一点建议[J]. 地震学报,35(2):262–271. doi: 10.3969/j.issn.0253-3782.2013.02.012
    Rong M S,Li X J,Lu T,Huang Y H,Lü Y J. 2013. Suggestion on determination of design ground motion parameters for offshore engineering sites with deep soft surface layers[J]. Acta Seismologica Sinica,35(2):262–271 (in Chinese).
    杨铭,胡进军,谭景阳,公茂盛. 2020. 日本DONET1海域地震动数据及其特征初步分析[J]. 地震工程与工程振动,40(3):139–147.
    Yang M,Hu J J,Tan J Y,Gong M S. 2020. Offshore ground motion data in DONET1 of Japan and preliminary analysis on its characteristics[J]. Earthquake Engineering and Engineering Vibration,40(3):139–147 (in Chinese).
    郑天愉,姚振兴,谢礼立. 1985. 海底强地面运动计算[J]. 地震工程与工程振动,5(3):13–22.
    Zheng T Y,Yao Z X,Xie L L. 1985. Strong motions of ocean bottom[J]. Earthquake Engineering and Engineering Vibration,5(3):13–22 (in Chinese).
    朱镜清. 1988. 地震作用下海水与海床土的耦合运动[J]. 地震工程与工程振动,8(2):37–43.
    Zhu J Q. 1988. Coupled motion between sea water and sea bed-soil under earthquake action[J]. Earthquake Engineering and Engineering Vibration,8(2):37–43 (in Chinese).
    Bao X,Liu J B,Li S T,Wang F,Wang P G. 2020. Seismic response analysis of the reef-seawater system under obliquely incident P and SV waves[J]. Ocean Eng,200:107021. doi: 10.1016/j.oceaneng.2020.107021
    Bielak J,Loukakis K,Hisada Y,Yoshimura C. 2003. Domain reduction method for three-dimensional earthquake modeling in localized regions,part I:Theory[J]. Bull Seismol Soc Am,93(2):817–824. doi: 10.1785/0120010251
    Brekhovskikh L M. 1980. Waves in Layered Media[M]. 2nd ed. New York: Academic Press.
    Chen B K,Wang D S,Li H N,Sun Z G,Li C. 2017. Vertical-to-horizontal response spectral ratio for offshore ground motions:Analysis and simplified design equation[J]. J Cent South Univ,24(1):203–216. doi: 10.1007/s11771-017-3421-0
    Li C,Hao H,Li H N,Bi K M,Chen B K. 2017. Modeling and simulation of spatially correlated ground motions at multiple onshore and offshore sites[J]. J Earthq Eng,21(3):359–383. doi: 10.1080/13632469.2016.1172375
    Lindsay R B. 1939. Filtration of oblique elastic waves in stratified media[J]. J Acoust Soc Am,11(2):178–183. doi: 10.1121/1.1916021
    Link G,Kaltenbacher M,Breuer M,Döllinger M. 2009. A 2D finite-element scheme for fluid-solid-acoustic interactions and its application to human phonation[J]. Comput Methods Appl Mech Eng,198(41/42/43/44):3321–3334.
    Okamoto T,Takenaka H,Nakamura T,Hara T. 2017. FDM simulation of earthquakes off western Kyushu,Japan,using a land-ocean unified 3D structure model[J]. Earth Planets Space,69:88. doi: 10.1186/s40623-017-0672-9
    Yoshimura C,Bielak J,Hisada Y,Fernández A. 2003. Domain reduction method for three-dimensional earthquake modeling in localized regions,part II:Verification and applications[J]. Bull Seismol Soc Am,93(2):825–841. doi: 10.1785/0120010252
  • Related Articles

  • Cited by

    Periodical cited type(4)

    1. 张丽峰,孙玺皓,马茹莹,赵玉红,胡维云. 2018年青海称多M_S5.3地震前热红外亮温异常分析及预测回顾. 地震工程学报. 2023(01): 153-160 .
    2. 刘善军,纪美仪,宋丽美,魏恋欢. 基于改进两步差法的玛多M_S7.4地震微波异常研究. 地震学报. 2023(02): 328-340 . 本站查看
    3. 孟亚飞,孟庆岩,张颖,周世健,刘文宝. 基于夜间多时相遥感数据的热异常与地震的相关性. 地震学报. 2021(01): 124-135 . 本站查看
    4. 孟亚飞,孟庆岩,周世健,张颖. 基于卫星数据稳健分析技术统计分析新疆地区热异常与地震的关系. 地震学报. 2020(02): 205-215+245 . 本站查看

    Other cited types(4)

Catalog

    Article views (342) PDF downloads (81) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return