Han L,Tao Z R,Cao Z L,Tao X X. 2022. Preliminary discussion and identification of pulse-like strong motion for the 1979 Imperial Valley earthquake. Acta Seismologica Sinica44(1):158−169. DOI: 10.11939/jass.20210089
Citation: Han L,Tao Z R,Cao Z L,Tao X X. 2022. Preliminary discussion and identification of pulse-like strong motion for the 1979 Imperial Valley earthquake. Acta Seismologica Sinica44(1):158−169. DOI: 10.11939/jass.20210089

Preliminary discussion and identification of pulse-like strong motion for the 1979 Imperial Valley earthquake

More Information
  • Received Date: May 29, 2021
  • Revised Date: August 26, 2021
  • Available Online: February 14, 2022
  • Published Date: March 17, 2022
  • Taking the 1979 MW6.5 Imperial Valley earthquake as an example, we compared the three methods of pulse-like strong motion identification, that is, wavelet analysis, peak-point method (PPM) and zero velocity point method (ZVPM). The identified peak values are similar, however, the identified pulse periods are slightly different. To analyze the mechanism of the velocity pulse, including the generation time, location, and the impact of asperity, we use the frequency-wavenumber Green’s function (FK method) to synthesize broadband ground motion. PPM is used to gradually identify the velocity pulses during the superposition of the sub-source ground motions. Analyzing the changes of the frequency components in sub-fault ground motion during the superposition process by using time-frequency analysis method and the impact of the spatial relationship between the asperity and the station on the pulse generation, preliminarily discuss the generation mechanism of the velocity pulse.
  • 曹泽林. 2020. 基于FK法的三分量宽频带强地震动场合成[D]. 哈尔滨: 哈尔滨工业大学: 141−142.
    Cao Z L. 2020. Synthesis of Three-Component Broadband Strong Ground Motion Field Based on FK Approach[D]. Harbin: Harbin Institute of Technology: 141−142 (in Chinese).
    刘启方. 2005. 基于运动学和动力学震源模型的近断层地震动研究[D]. 哈尔滨: 中国地震局工程力学研究所: 19−98.
    Liu Q F. 2005. Studies on Near-Fault Ground Motions Based on Kinematic and Dynamic Source Models[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 19−98 (in Chinese).
    罗全波. 2019. 基于运动学震源模型的近断层速度大脉冲数值模拟研究[D]. 北京: 中国地震局地球物理研究所: 47−49.
    Luo Q B. 2019. Studies on Numerical Simulation of Near-Fault Large Velocity Pulse Based on Kinematic Source Model[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 47−49 (in Chinese).
    蒋连接,白国良. 2016. 不同类型的近断层脉冲型地震动能量特性研究[J]. 结构工程师,32(6):92–96.
    Jiang L J,Bai G L. 2016. Study on energy characteristics of different types of near fault pulse ground motions[J]. Structural Engineers,32(6):92–96.
    Aki K. 1967. Scaling law of seismic spectrum[J]. J Geophys Res,72(4):1217–1231. doi: 10.1029/JZ072i004p01217
    Aki K. 1968. Seismic displacements near a fault[J]. J Geophys Res,73(16):5359–5376. doi: 10.1029/JB073i016p05359
    Anderson J C,Bertero V V. 1987. Uncertainties in establishing design earthquakes[J]. J Struct Eng,113(8):1709–1724. doi: 10.1061/(ASCE)0733-9445(1987)113:8(1709)
    Archuleta R J. 1984. A faulting model for the 1979 Imperial Valley earthquake[J]. J Geophys Res,89(B6):4559–4585. doi: 10.1029/JB089iB06p04559
    Baker J W. 2007. Quantitative classification of near-fault ground motions using wavelet analysis[J]. Bull Seismol Soc Am,97(5):1486–1501. doi: 10.1785/0120060255
    Benioff H. 1955. Mechanism and strain characteristics of the White Wolf fault as indicated by the aftershock sequence; earthquakes in Kern County,California during 1955[J]. Calif Div Mines Bull,171:199–202.
    Dickinson B W, Gavin H P. 2011. Parametric statistical generalization of uniform-hazard earthquake ground motions[J]. J Struct Eng 137(3): 410–422.
    Fayjaloun R,Causse M,Voisin C,Cornou C,Cotton F. 2017. Spatial variability of the directivity pulse periods observed during an earthquake[J]. Bull Seismol Soc Am,107(1):308–318. doi: 10.1785/0120160199
    Hartzell S H,Heaton T H. 1983. Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley,California,earthquake[J]. Bull Seismol Soc Am,73(6A):1553–1583. doi: 10.1785/BSSA07306A1553
    Housner G W,Hudson D E. 1958. The port Hueneme earthquake of March 18,1957[J]. Bull Seismol Soc Am,48(2):163–168. doi: 10.1785/BSSA0480020163
    Housner G W,Trifunac M D. 1967. Analysis of accelerograms:Parkfield earthquake[J]. Bull Seismol Soc Am,57(6):1193–1220. doi: 10.1785/BSSA0570061193
    Iervolino I,Cornell C A. 2008. Probability of occurrence of velocity pulses in near-source ground motions[J]. Bull Seismol Soc Am,98(5):2262–2277. doi: 10.1785/0120080033
    Kagawa T. 2009. Conditions of fault rupture and site location that generate damaging pulse waves[C]//Proceedings of the 6th International Conference on Urban Earthquake Engineering. Japan: CUEE2009: 53–58.
    Lin Y Y,Kanamori H,Zhan Z W,Ma K F,Yeh T Y. 2020. Modelling of pulse-like velocity ground motion during the 2018 MW6.3 Hualien earthquake,Taiwan[J]. Geophys J Int,223(1):348–365. doi: 10.1093/gji/ggaa306
    Mena B,Mai P M. 2011. Selection and quantification of near-fault velocity pulses owing to source directivity[J]. Georisk,5(1):25–43.
    Mukhopadhyay S,Gupta V K. 2013. Directivity pulses in near-fault ground motions-I:Identification,extraction and modeling[J]. Soil Dyn Earthq Eng,50:1–15. doi: 10.1016/j.soildyn.2013.02.017
    Osaki Y. 1994. A Primer on the Spectral Analysis of Ground Motions[M]. Tokoy: Kajirna Institute Publishing Co: 14−15 (in Japanese).
    Poiata N, Miyake H, Koketsu K. 2018. Mechanisms for generation of near-fault ground motion pulses for dip-slip faulting[M]//Dalguer L, Fukushima Y, Irikura K, Wu C, eds. Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations. Cham: Birkhäuser: 197–212.
    Scala A,Festa G,Del Gaudio S. 2018. Relation between near-fault ground motion impulsive signals and source parameters[J]. J Geophys Res:Solid Earth,123(9):7707–7721. doi: 10.1029/2018JB015635
    Shahi S K,Baker J W. 2014. An efficient algorithm to identify strong-velocity pulses in multicomponent ground motions[J]. Bull Seismol Soc Am,104(5):2456–2466. doi: 10.1785/0120130191
    Somerville P G,Smith N F,Graves R W,Abrahamson N A. 1997. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity[J]. Seism Res Lett,68(1):199–222. doi: 10.1785/gssrl.68.1.199
    Somerville P G. 2003. Magnitude scaling of the near fault rupture directivity pulse[J]. Phys Earth Planet Inter,137(1/4):201–212.
    Zhai C H,Chang Z W,Li S,Chen Z Q,Xie L L. 2013. Quantitative identification of near-fault pulse-like ground motions based on energy[J]. Bull Seismol Soc Am,103(5):2591–2603. doi: 10.1785/0120120320
    Zhao G C,Xu L J,Xie L L. 2016. A simple and quantitative algorithm for identifying pulse-like ground motions based on zero velocity point method[J]. Bull Seismol Soc Am,106(3):1011–1023. doi: 10.1785/0120150226
  • Cited by

    Periodical cited type(15)

    1. 刘文玉,程正璞,年秀清,陈闫,胡钰铃,覃祖建,邵明正. 基于三维剩余密度结构的松原地震成因. 地震地质. 2024(02): 462-476 .
    2. 于晨,卢军,解滔,刘长生. 2017—2019年松原地区4次中强地震前绥化台地电阻率异常分析. 中国地震. 2023(02): 314-324 .
    3. 张志朋,李君,冯兵,王文青,柴旭超. 2021年青海玛多M_S7.4地震序列精定位与震源机制研究. 地震工程学报. 2022(01): 218-226 .
    4. 阮庆丰,刘俊清,田有,刘财,张宇,蔡宏雷. 松原地区地震发震机制与迁移特点研究. 地球物理学报. 2022(09): 3309-3321 .
    5. 李梦莹,张志宏,焦明若,方禹心. 2018-05-28松原M_S5.7地震地电场变化特征研究. 大地测量与地球动力学. 2022(12): 1276-1280+1299 .
    6. 李梦莹,杨士超,张志宏,孔祥瑞,孙庆山. 2018年松原M_S 5.7地震地电场变化特征. 地震地磁观测与研究. 2022(S1): 120-122 .
    7. Yu TANG,Aihua WENG,Yue YANG,Shiwen LI,Jianjun NIU,Yanhui ZHANG,Yabin LI,Jianping LI. Connection between earthquakes and deep fluids revealed by magnetotelluric imaging in Songyuan, China. Science China(Earth Sciences). 2021(01): 161-176 .
    8. 唐裕,翁爱华,杨悦,李世文,牛建军,张艳辉,李亚彬,李建平. 松原地震与流体作用联系的大地电磁证据. 中国科学:地球科学. 2021(01): 134-149 .
    9. 张志宏,郭安宁,李梦莹,黄明威,杨牧萍. 2018年吉林松原M_S5.7地震地磁异常分析. 科学技术与工程. 2021(29): 12406-12414 .
    10. 张洪艳,刘轶男,张帆,卢燕红,张宇. 吉林松原宁江地震序列精定位. 防灾科技学院学报. 2020(01): 32-37 .
    11. 李永生,赵谊,李继业,高峰,石伟. 2018年5月28日吉林松原M_S5.7地震发震构造分析. 地震学报. 2020(01): 12-23+120 . 本站查看
    12. 阮庆丰,刘财,刘俊清,张宇,郑国栋. 2019年5月18日松原M5.1地震构造机制分析. 吉林大学学报(地球科学版). 2020(06): 1897-1904 .
    13. 李迎春,李锋,王俊菲,许田,王金艳. 2019年黄海M_L4.6地震序列的震源机制和发震构造. 地震学报. 2020(05): 543-551+507 . 本站查看
    14. 王婷,延军平,李双双,万佳,张玉凤. 帕米尔高原Mw≥6.6级地震时间韵律特征. 高原地震. 2020(04): 6-16 .
    15. 李艳娥,邢成起,陈丽娟,郭祥云,康建红. 2017—2018年吉林松原地震序列研究. 地震学报. 2019(04): 435-444 . 本站查看

    Other cited types(5)

Catalog

    Article views (496) PDF downloads (79) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return