Volume 44 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Zhou S X,Xue M. 2022. Lithospheric velocity structure of Alaska revealed by double difference tomography. Acta Seismologica Sinica,44(3):374−387 doi: 10.11939/jass.20210122
Citation: Zhou S X,Xue M. 2022. Lithospheric velocity structure of Alaska revealed by double difference tomography. Acta Seismologica Sinica44(3):374−387 doi: 10.11939/jass.20210122

Lithospheric velocity structure of Alaska revealed by double difference tomography

doi: 10.11939/jass.20210122
  • Received Date: 2021-07-05
  • Rev Recd Date: 2021-09-29
  • Available Online: 2022-04-29
  • Publish Date: 2022-06-27
  • Alaska region is formed by the northward accretions of terranes from different geological periods and has experienced extensive internal deformation and metamorphism, and the geological structure is complex. The Array Network Facility (ANF) website recently provides new observational data from the seismic network of USAarray, filling the observation gap in the west and north of Alaska. Based on P and S wave arrivals of 5 638 events recorded by 345 stations from ANF, this study relocates earthquakes and images the 3D lithospheric P-wave velocity structure beneath Alaska simultaneously by regional double difference tomography. The results reveal larger dip angle of subducting Pacific Plate and low-vP anomalies in the mantle wedge beneath western Alaska. These observations reflect the subduction process, during which the dehydration of the subduting Pacific Plate releases fluids into the mantle wedge, triggers partial melting, and generates melts, which was then transported to the surface by the upwelling flow so as to form Aleutian volcanic arc. In central Alaska, the coupling between the Yakutat terrane and the Pacific Plate reduces the subduction dip. On the one hand, the shallow subduction of the Yakutat terrane increases the compressive stress of the crust, causing the crustal thickening and uplifting of Chugach mountains. On the other hand, it cools the mantle wedge reducing magma generation, which are then combined with the closure of crust fractures resulted from the increase of the crustal stress, blocking the supply of melt to the surface, and finally leading to the formation of Denali volcanic gap. In addition, there is a clear boundary between Yakutat terrane and Wrangell volcanic field in the east, and the low velocity zone corresponding to magmatic activity in the region is concentrated in the northwest. The magma source may be related to upwelling of the toroidal mantle flow around the Pacific-Yakutat slab edge. These results suggest that the complex geodynamic processes in deep Alaska lead to the complex geological structure on the surface.

     

  • loading
  • [1]
    Liu W,Wu Q J,Zhang F X. 2019. Crustal structure of southeastern Tibetan Plateau inferred from double-difference tomography[J]. Acta Seismologica Sinica,41(2):155–168 (in Chinese).
    [2]
    Xin H L,Zeng X W,Kang M,Gao J. 2020. Crustal fine velocity structure of the Haiyuan arcuate tectonic zone from double-difference tomography[J]. Chinese Journal of Geophysics,63(3):897–914 (in Chinese).
    [3]
    Zuo K Z,Chen J F. 2018. 3D body-wave velocity structure of crust and relocation of earthquakes in the Menyuan area[J]. Chinese Journal of Geophysics,61(7):2788–2801 (in Chinese).
    [4]
    Allam A A,Schulte-Pelkum V,Ben-Zion Y,Tape C,Ruppert N,Ross Z E. 2017. Ten kilometer vertical Moho offset and shallow velocity contrast along the Denali fault zone from double-difference tomography,receiver functions,and fault zone head waves[J]. Tectonophysics,721:56–69. doi: 10.1016/j.tecto.2017.09.003
    [5]
    Christensen D H,Abers G A. 2010. Seismic anisotropy under central Alaska from SKS splitting observations[J]. J Geophys Res:Solid Earth,115(B4):B04315.
    [6]
    Christeson G L,Gulick S P S,van Avendonk H J A,Worthington L L,Reece R S,Pavlis T L. 2010. The Yakutat terrane:Dramatic change in crustal thickness across the transition fault,Alaska[J]. Geology,38(10):895–898. doi: 10.1130/G31170.1
    [7]
    Chuang L,Bostock M,Wech A,Plourde A. 2017. Plateau subduction,intraslab seismicity,and the Denali (Alaska) volcanic gap[J]. Geology,45(7):647–650. doi: 10.1130/G38867.1
    [8]
    DeMets C,Dixon T H. 1999. New kinematic models for Pacific-North America motion from 3 Ma to present,I:Evidence for steady motion and biases in the NUVEL-1A model[J]. Geophys Res Lett,26(13):1921–1924. doi: 10.1029/1999GL900405
    [9]
    Eberhart-Phillips D,Christensen D H,Brocher T M,Hansen R,Ruppert N A,Haeussler P J,Abers G A. 2006. Imaging the transition from Aleutian subduction to Yakutat collision in central Alaska,with local earthquakes and active source data[J]. J Geophys Res:Solid Earth,111(B11):B11303.
    [10]
    Enkelmann E,Zeitler P K,Pavlis T L,Garver J I,Ridgway K D. 2009. Intense localized rock uplift and erosion in the St Elias orogen of Alaska[J]. Nat Geosci,2(5):360–363. doi: 10.1038/ngeo502
    [11]
    Feng L L,Ritzwoller M H. 2019. A 3-D shear velocity model of the crust and uppermost mantle beneath Alaska including apparent radial anisotropy[J]. J Geophys Res:Solid Earth,124(10):10468–10497. doi: 10.1029/2019JB018122
    [12]
    Ferris A,Abers G A,Christensen D H,Veenstra E. 2003. High resolution image of the subducted Pacific (?) plate beneath central Alaska,50−150 km depth[J]. Earth Planet Sci Lett,214(3/4):575–588.
    [13]
    Gou T,Zhao D P,Huang Z C,Wang L S. 2019. Aseismic deep slab and mantle flow beneath Alaska:Insight from anisotropic tomography[J]. J Geophys Res:Solid Earth,124(2):1700–1724. doi: 10.1029/2018JB016639
    [14]
    Hacker B R,Peacock S M,Abers G A,Holloway S D. 2003. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?[J]. J Geophys Res:Solid Earth,108(B1):2030.
    [15]
    Hansen P C,O’Leary D P. 1993. The use of the L-curve in the regularization of discrete ill-posed problems[J]. SIAM J Sci Comput,14(6):1487–1503. doi: 10.1137/0914086
    [16]
    Hayes G P,Wald D J,Johnson R L. 2012. Slab1.0:A three-dimensional model of global subduction zone geometries[J]. J Geophys Res:Solid Earth,117(B1):B01302.
    [17]
    Jadamec M A,Billen M I. 2010. Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge[J]. Nature,465(7296):338–341. doi: 10.1038/nature09053
    [18]
    Jadamec M A,Billen M I. 2012. The role of rheology and slab shape on rapid mantle flow:Three-dimensional numerical models of the Alaska slab edge[J]. J Geophys Res:Solid Earth,117(B2):B02304.
    [19]
    Jadamec M A,Billen M I,Roeske S M. 2013. Three-dimensional numerical models of flat slab subduction and the Denali fault driving deformation in south-central Alaska[J]. Earth Planet Sci Lett,376:29–42. doi: 10.1016/j.jpgl.2013.06.009
    [20]
    Jiang C X,Schmandt B,Ward K M,Lin F C,Worthington L L. 2018. Upper mantle seismic structure of Alaska from Rayleigh and S wave tomography[J]. Geophys Res Lett,45(19):10350–10359.
    [21]
    Kissling E,Lahr J C. 1991. Tomographic image of the Pacific slab under southern Alaska[J]. Eclogae Geol Helv,84(2):297–315.
    [22]
    Martin-Short R,Allen R,Bastow I D,Porritt R W,Miller M S. 2018. Seismic imaging of the Alaska subduction zone:Implications for slab geometry and volcanism[J]. Geochem Geophys Geosyst,19(11):4541–4560. doi: 10.1029/2018GC007962
    [23]
    McNamara D E,Pasyanos M E. 2002. Seismological evidence for a sub-volcanic arc mantle wedge beneath the Denali volcanic gap,Alaska[J]. Geophys Res Lett,29(16):1814.
    [24]
    Miller M S,Moresi L. 2018. Mapping the Alaskan Moho[J]. Seismol Res Lett,89(6):2430–2436. doi: 10.1785/0220180222
    [25]
    Page R A, Stephens C D, Lahr J C.1989. Seismicity of the Wrangell and Aleutian Wadati-Benioff zones and the North American Plate along the Trans-Alaska crustal transect, Chugach mountains and Copper River basin, southern Alaska[J]. J Geophys Res: Solid Earth, 94(B11): 16059-16082.
    [26]
    Qi C,Zhao D P,Chen Y. 2007. Search for deep slab segments under Alaska[J]. Phys Earth Planet Inter,165(1/2):68–82.
    [27]
    Richter D H,Smith J G,Lanphere M A,Dalrymple G B,Reed B L,Shew N. 1990. Age and progression of volcanism,Wrangell volcanic field,Alaska[J]. Bull Volcanol,53(1):29–44. doi: 10.1007/BF00680318
    [28]
    Rondenay S,Montési L G J,Abers G A. 2010. New geophysical insight into the origin of the Denali volcanic gap[J]. Geophys J Int,182(2):613–630. doi: 10.1111/j.1365-246X.2010.04659.x
    [29]
    Sauber J,McClusky S,King R. 1997. Relation of ongoing deformation rates to the subduction zone process in southern Alaska[J]. Geophys Res Lett,24(22):2853–2856. doi: 10.1029/97GL52979
    [30]
    Schultz R A,Aydin A. 1990. Formation of interior basins associated with curved faults in Alaska[J]. Tectonics,9(6):1387–1407. doi: 10.1029/TC009i006p01387
    [31]
    Thurber C,Eberhart-Phillips D. 1999. Local earthquake tomography with flexible gridding[J]. Comput Geosci,25(7):809–818. doi: 10.1016/S0098-3004(99)00007-2
    [32]
    Thurber C H,Brocher T M,Zhang H J,Langenheim V E. 2007. Three-dimensional P wave velocity model for the San Francisco Bay region,California[J]. J Geophys Res:Solid Earth,112(B7):B07313.
    [33]
    van Stiphout T,Kissling E,Wiemer S,Ruppert N. 2009. Magmatic processes in the Alaska subduction zone by combined 3-D b value imaging and targeted seismic tomography[J]. J Geophys Res:Solid Earth,114(B11):B11302.
    [34]
    Venereau C M A,Martin-Short R,Bastow I D,Allen R M,Kounoudis R. 2019. The role of variable slab dip in driving mantle flow at the eastern edge of the Alaskan subduction margin:Insights from shear-wave splitting[J]. Geochem Geophys Geosyst,20(5):2433–2448.
    [35]
    Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006
    [36]
    Wang Y,Tape C. 2014. Seismic velocity structure and anisotropy of the Alaska subduction zone based on surface wave tomography[J]. J Geophys Res:Solid Earth,119(12):8845–8865. doi: 10.1002/2014JB011438
    [37]
    Ward K M. 2015. Ambient noise tomography across the southern Alaskan Cordillera[J]. Geophys Res Lett,42(9):3218–3227. doi: 10.1002/2015GL063613
    [38]
    Ward K M,Lin F C. 2018. Lithospheric structure across the Alaskan Cordillera from the joint inversion of surface waves and receiver functions[J]. J Geophys Res:Solid Earth,123(10):8780–8797. doi: 10.1029/2018JB015967
    [39]
    Xin H L,Zhang H J,Kang M,He R Z,Gao L,Gao J. 2019. High-resolution lithospheric velocity structure of continental China by double-difference seismic travel-time tomography[J]. Seismol Res Lett,90(1):229–241. doi: 10.1785/0220180209
    [40]
    You T,Zhao D P. 2012. Seismic anisotropy and heterogeneity in the Alaska subduction zone[J]. Geophys J Int,190(1):629–649. doi: 10.1111/j.1365-246X.2012.05512.x
    [41]
    Zhang H,Thurber C H. 2007. Estimating the model resolution matrix for large seismic tomography problems based on Lanczos bidiagonalization with partial reorthogonalization[J]. Geophys J Int,170(1):337–345. doi: 10.1111/j.1365-246X.2007.03418.x
    [42]
    Zhang H J,Thurber C H. 2003. Double-difference tomography:The method and its application to the Hayward fault,California[J]. Bull Seismol Soc Am,93(5):1875–1889. doi: 10.1785/0120020190
    [43]
    Zhang Y,Li A B,Hu H. 2019. Crustal structure in Alaska from receiver function analysis[J]. Geophys Res Lett,46(3):1284–1292. doi: 10.1029/2018GL081011
    [44]
    Zhao D P,Christensen D,Pulpan H. 1995. Tomographic imaging of the Alaska subduction zone[J]. J Geophys Res:Solid Earth,100(B4):6487–6504. doi: 10.1029/95JB00046
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (367) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return