Volume 45 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Li X B,Wei D J,Li X T,Luo L. 2023. Feature and mechanism of geoelectric field related to atmospheric pressure. Acta Seismologica Sinica,45(1):62−75 doi: 10.11939/jass.20210127
Citation: Li X B,Wei D J,Li X T,Luo L. 2023. Feature and mechanism of geoelectric field related to atmospheric pressure. Acta Seismologica Sinica45(1):62−75 doi: 10.11939/jass.20210127

Feature and mechanism of geoelectric field related to atmospheric pressure

doi: 10.11939/jass.20210127
  • Received Date: 2021-07-25
  • Rev Recd Date: 2022-05-06
  • Available Online: 2022-12-13
  • Publish Date: 2023-01-17
  • Using the geoelectric field data recorded by four geoelectric stations in Ningxia, the variation characteristics, spectral characteristics, the relationship with regional pressure variation, and the relationship between the measuring direction and the strike of nearby faults are studied. The research results show that part of the geoelectric field has diurnal variation characteristics, and also has the characteristics of non-periodic variation of atmospheric pressure, which is negatively correlated with the variation of atmospheric pressure, and the correlation is related to the angle between the measuring direction and the strike of nearby faults. It is considered that the geoelectric field has the characteristics of non-periodic change of atmospheric pressure is caused by the fluid “channeling” resulting from the change of air pressure system in the seepage process, which is due to the permeability difference between the bedrock pores and the nearby fault fractures.

     

  • loading
  • [1]
    An Z H,Du X B,Fan Y Y,Liu J,Tan D C,Cui T F,Chen J Y,Wang J J. 2015. Characteristics of geo-electric field changes before the 2013 Lushan MS7.0 earthquake[J]. Earthquake,35(1):91–99 (in Chinese).
    [2]
    Chai C Z, Meng G K, Ma G R. 2011. Active Fault Surveying and Seismic Hazard Evolution in Yinchuan Basin[M]. Beijing: Science Press: 173–179 (in Chinese).
    [3]
    Chen J Y,Yang X S,Dang J X,He C R,Zhou Y S,Ma S L. 2011. Internal structure and permeability of Wenchuan earthquake fault[J]. Chinese Journal of Geophysics,54(7):1805–1816 (in Chinese).
    [4]
    Cheng L S. 2011. Advanced Mechanics of Seepage in Porous Media[M]. Beijing: Petroleum Industry Press: 168–169 (in Chinese).
    [5]
    Cui D X,Wang Q L,Hu Y X,Wang W P,Zhu G Z. 2009. Inversion of GPS data for slip rates and locking depths of the Haiyuan fault[J]. Acta Seismologica Sinica,31(5):516–525 (in Chinese).
    [6]
    Cui T F,Du X B,Ye Q,Chen J Y,Wang J J,An Z H,Fan Y Y,Liu J. 2013. The diurnal variation of geo-electric field along the longitude and latitude chains in China mainland[J]. Chinese Journal of Geophysics,56(7):2358–2368 (in Chinese).
    [7]
    Du P. 2010. Studying the Active Characteristics and Paleoearthquake of the Eastern Piedmont Fault of Helan Mountains in the Late Quaternary[D]. Beijing: China University of Geosciences (Beijing): 13 (in Chinese).
    [8]
    Fan Y Y,Du X B,Zlotnicki J,Tan D C,Liu J,An Z H,Chen J Y,Zheng G L,Xie T. 2010. The electromagnetic phenomena before the MS8.0 Wenchuan earthquake[J]. Chinese Journal of Geophysics,53(12):2887–2898 (in Chinese).
    [9]
    Fu C Y, Chen Y T, Qi G Z. 1985. Geophysical Fundamentals[M]. Beijing: Science Press: 447 (in Chinese).
    [10]
    Institute of Geology, China Seismological Bureau, Seismological Bureau of Ningxia Hui Autonomous Region. 1990. Haiyuan Active Fault Zone[M]. Beijing: Seismological Press: 234–855 (in Chinese).
    [11]
    Huang Q H,Liu T. 2006. Earthquakes and tide response of geoelectric potential field at the Niijima station[J]. Chinese Journal of Geophysics,49(6):1745–1754 (in Chinese).
    [12]
    Lai G J. 2014. The Response Characteristics and Mechanism of Groundwater Level to Barometric Pressure and Earth Tides[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 5 (in Chinese).
    [13]
    Li J M. 2005. Geoelectric Field and Electric Prospecting[M]. Beijing: Geological Publishing House: 178 (in Chinese).
    [14]
    Li X B. 2022. Relationship between geoelectric field variation and active faults based on different types of electrodes[J]. Journal of Geodesy and Geodynamics,42(2):119–124 (in Chinese).
    [15]
    Liu M J,Li S L,Zhang X K,Fan J C,Song Z L. 2004. The observation of trapped waves and the width of the shattered zone in Haiyuan fault zone[J]. Geophysical and Geochemical Exploration,28(6):549–552 (in Chinese).
    [16]
    Liu S D,Wang B,Zhou G Q,Yang S L,Chen M J. 2009. Experimental research on mine floor water hazard early warning based on response of geoelectric field in groundwater seepage[J]. Chinese Journal of Rock Mechanics and Engineering,28(2):267–272 (in Chinese).
    [17]
    Luo S C, 2003. Study of the Loading Effects of the Atmospheric Pressure[D]. Beijing: Institute of Geodesy and Geophysics, Chinese Academy of Sciences: 19 (in Chinese).
    [18]
    Pang Y J,Yang S H,Li H B,Cheng H H,Shi Y L. 2019. Numerical modeling of current crustal stress state in Haiyuan−Liupanshan fault system of NE Tibet[J]. Acta Petrologica Sinica,35(6):1848–1856 (in Chinese). doi: 10.18654/1000-0569/2019.06.13
    [19]
    Qiao X,Qu C Y,Shan X J,Li Y C,Zhu C H. 2019. Deformation characteristics and kinematic parameters inversion of Haiyuan fault zone based on time series InSAR[J]. Seismology and Geology,41(6):1481–1496 (in Chinese).
    [20]
    Sun Z J, Wang H J. 1984. Introduction on the Geoelctric Subject[M]. Beijing: Seismological Press: 23–28 (in Chinese).
    [21]
    Tan D C,Zhao J L,Xi J L,Du X B,Xu J M. 2010. A study on feature and mechanism of the tidal geoelectrical field[J]. Chinese Journal of Geophysics,53(3):544–555 (in Chinese).
    [22]
    Tan D C,Wang L W,Zhao J L,Xi J L,Liu D P,Yu H,Chen J Y. 2011. Influence factors of harmonic waves and directional waveforms of tidal geoelectrical field[J]. Chinese Journal of Geophysics,54(7):1842–1853 (in Chinese).
    [23]
    Tan D C,Xin J C,Wang J J,Fan Y Y,Wang W M. 2019. Application foundation and earthquake case analysis of the telluric field rock crack model[J]. Chinese Journal of Geophysics,62(2):558–571 (in Chinese).
    [24]
    Tang J,Zhan Y,Wang L F,Dong Z Y,Zhao G Z,Xu J L. 2010. Electromagnetic coseismic effect associated with aftershock of Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics,53(3):526–534 (in Chinese).
    [25]
    Wang L W,Zhang S Z,Kang Y S,An H J. 2011. Experimental observation and preliminary data analysis of vertical geo-electric field[J]. Acta Seismologica Sinica,33(4):461–470 (in Chinese).
    [26]
    Xi J L,Song Y R,Hu M Z,Liu C,Xu X G,Shang X Q. 2013. Research on the observation methods and techniques of omni-directional spontaneous electric field[J]. Acta Seismologica Sinica,35(1):94–107 (in Chinese).
    [27]
    Xu W Y,Li W D. 1993. Ut-variability of the Sq dynamo current and its ground magnetic field reconstruction[J]. Chinese Journal of Geophysics,36(4):417–427 (in Chinese).
    [28]
    Ye Q,Du X B,Zhou K C,Li N,Ma Z H. 2007. Spectrum characteristics of geoelectric field variation[J]. Acta Seismologica Sinica,29(4):382–390 (in Chinese).
    [29]
    Zeng X W,Xin H L,Chen C M,Cai X H. 2015. Characteristics research of tectonic stress in southern Ningxia and its adjacent areas by focal mechanisms of small earthquakes[J]. Journal of Seismological Research,38(1):51–57 (in Chinese).
    [30]
    Zhang X M,Zhai Y Z,Guo X Z,Guo J F. 2007. Tidal wave anomalies of geoelectrical field before remote earthquakes[J]. Acta Seismologica Sinica,29(1):48–58 (in Chinese).
    [31]
    Zhao X D,Du A M,Xu W Y,Hong M H,Liu L B,Wei Y,Wang C G. 2008. The origin of the prenoon-postnoon asymmetry for Sq current system[J]. Chinese Journal of Geophysics,51(3):643–649 (in Chinese).
    [32]
    Zhao Z J,Liu X J. 1990. Seismic activity and local tectonic stress field in Ningxia and nearby regions[J]. Seismology and Geology,12(1):31–46 (in Chinese).
    [33]
    Lanzerotti L J,Sayres D S,Medford L V,Maclennan C G,Lepping R P,Szabo A. 2000. Response of large-scale geoelectric fields to identified interplanetary disturbances and the equatorial ring current[J]. Advances in Space Research,26(1):21–26. doi: 10.1016/S0273-1177(99)01021-2
    [34]
    Mizoguchi K,Hirose T,Shimamoto T,Fukuyama E. 2008. Internal structure and permeability of the Nojima fault,southwest Japan[J]. J Struct Geol,30(4):513–524.
    [35]
    Pirjola R. 2005. Effects of space weather on high-latitude ground systems[J]. Advances in Space Research,36(12):2231–2240. doi: 10.1016/j.asr.2003.04.074
    [36]
    Ren H X,Wen J,Huang Q H,Chen X F. 2015. Electrokinetic effect combined with surface-charge assumption:A possible generation mechanism of co-seismic EM signals[J]. Geophys J Int,200(2):835–848.
    [37]
    Uyeda S. 1998. VAN method of short-term earthquake prediction shows promise[J]. Eos Transactions American Geophysical Union,79(47):573–580.
    [38]
    Varotsos P,Alexopoulos K. 1984. Physical properties of the variations of the electric field of the earth preceding earthquakes:I[J]. Tectonophysics,110(1/2):73–98. doi: 10.1016/0040-1951(84)90059-3
    [39]
    Zhang P Z,Min W,Deng Q D,Mao F Y. 2005. Paleoearthquake rupture behavior and recurrence of great earthquakes along the Haiyuan fault,northwestern China[J]. Science in China Series D:Earth Science,48(3):364–375.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (148) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return