Volume 45 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Liu R,Chen Q,Yang Y H,Zhong X,Yuan Y. 2023. Impact of dynamic stress on aftershock triggering of the 2021 Yunnan Yangbi MS6.4 earthquake. Acta Seismologica Sinica,45(1):17−28 doi: 10.11939/jass.20210157
Citation: Liu R,Chen Q,Yang Y H,Zhong X,Yuan Y. 2023. Impact of dynamic stress on aftershock triggering of the 2021 Yunnan Yangbi MS6.4 earthquake. Acta Seismologica Sinica45(1):17−28 doi: 10.11939/jass.20210157

Impact of dynamic stress on aftershock triggering of the 2021 Yunnan Yangbi MS6.4 earthquake

doi: 10.11939/jass.20210157
  • Received Date: 2021-10-08
  • Rev Recd Date: 2022-01-11
  • Available Online: 2023-01-11
  • Publish Date: 2023-01-17
  • Based on the waveform data of IRIS teleseismic station, this paper inversed the focal rupture process of Yunnan Yangbi MS6.4 earthquake, calculated the dynamic Coulomb rupture stress change caused by fault rupture in near field and discussed the dynamic stress triggering effect of main shock on near-field aftershock activity. The results show that the evolution process of dynamic Coulomb stress is consistent with the inversion results of source fracture characteristics, and its size distribution is also well correlated with the density of seismic sequence distribution. The static and dynamic Coulomb rupture stress produced by the main shock promote the occurrence of aftershocks, but compared with the static stress, the proportion of aftershocks located in the positive Coulomb rupture stress area is increased by 21%, and the positive and negative areas of aftershocks and dynamic Coulomb stress change have better consistency. The dynamic stress can better explain the spatial characteristics of aftershocks distribution after the earthquake. Small earthquakes cluster at 10 km perpendicular to the main trunk of the earthquake sequence, which may be caused by the dominant dynamic Coulomb fracture stress produced by the main earthquake. Quantitative analysis of the dynamic stress triggering of the main shock to the aftershock shows that within one week after the main shock, eight aftershocks receiving points bigger than MS4.0 are triggered by the dynamic Coulomb rupture stress.


  • loading
  • [1]
    Chang Z F,Chang H,Li J L,Dai B Y,Zhou Q Y,Zhu J L,Luo Z Q. 2016. The characteristic of active normal faulting of the southern segment of Weixi−Qiaohou fault[J]. Journal of Seismological Research,39(4):579–586 (in Chinese).
    Hao P,Liu J,Han Z J,Fu Z X. 2006. Dynamic stress triggering of three subsequent moderately strong earthquakes in China’s mainland following the Indonesia MS8.7 earthquake[J]. Earthquake,26(3):26–36 (in Chinese).
    Ji Z B,Wang Q,Wang H T,Xie C D. 2014. Impact of complete Coulomb failure stress changes of the 2008 Xinjiang Yutian MS7.3 earthquake on the subsequent earthquakes[J]. Acta Seismologica Sinica,36(6):997–1009 (in Chinese).
    Li C Y,Zhang J Y,Wang W,Sun K,Shan X J. 2021. The seismogenic fault of the 2021 Yunnan Yangbi MS6.4 earthquake[J]. Seismology and Geology,43(3):706–721 (in Chinese).
    Long F,Qi Y P ,Yi G X,Wu W W,Wang G M,Zhao X Y,Peng G L. 2021. Relocation of the MS6.4 Yangbi earthquake sequence on May 21,2021 in Yunnan Province and its seismogenic structure analysis[J]. Chinese Journal of Geophysics,64(8):2631–2646 (in Chinese).
    Miao M,Zhu S B. 2013. The static Coulomb stress change of the 2013 Lushan MS7.0 earthquake and its impact on the spatial distribution of aftershocks[J]. Acta Seismologica Sinica,35(5):619–631 (in Chinese).
    Miao M ,Zhu S B. 2016. The static Coulomb stress change of the 2014 Ludian earthquake and its influence on the aftershocks and surrounding faults[J]. Seismology and Geology,38(1):169–181 (in Chinese).
    Pan R,Jiang J Z,Fu H,Li J. 2019. Focal mechanism and focal depth determination of Yunnan Yangbi MS5.1 and MS4.8 earthquakes in 2017[J]. Journal of Seismological Research,42(3):338–348 (in Chinese).
    Sheng S Z,Wan Y G,Jiang C S,Bu Y F. 2015. Preliminary study on the static stress triggering effects on China mainland with the 2015 Nepal MS8.1 earthquake[J]. Chinese Journal Of Geophysics,58(5):1834–1842 (in Chinese).
    Wang Q,Xie C D,Ji Z B,Liu J M. 2016. Dynamically triggered aftershock activity and far-field microearthquakes following the 2014 MS7.3 Yutian,Xinjiang earthquake[J]. Chinese Journal of Geophysics,59(4):1383–1393 (in Chinese).
    Wu J P,Ming Y H,Wang C Y. 2004. Source mechanism of small-to-moderate earthquakes and tectonic stress field in Yunnan Province[J]. Acta Seismologica Sinica,26(5):457–465 (in Chinese).
    Xu C J,Wang J J,Xiong W. 2018. Retrospection and perspective for earthquake stress triggering[J]. Geomatics and Information Science of Wuhan University,43(12):2085–2092 (in Chinese).
    Yang Z X,Yu X W,Zheng Y J,Chen Y T,Ni X X,Chan W. 2004. Earthquake relocation and 3-dimensional crustal structure of P-wave velocity in central-western China[J]. Acta Seismologica Sinica,26(1):19 (in Chinese).
    Zhao L B,Zhao L F,Xie X B,Cao J X,Yao Z X. 2016. Static Coulomb stress changes and seismicity rate in the source region of the 12 February,2014 MW7.0 Yutian earthquake in Xinjiang,China[J]. Chinese Journal of Geophysics,59(10):3732–3743 (in Chinese).
    Bouchon M. 1981. A simple method to calculate Green’s functions for elastic layered media[J]. Bull Seism Soc Am,71(4):959–971.
    Bouchon M. 2003. A review of the discrete wavenumber method[J]. Pure Appl Geophys,160(3):445–465.
    Brodsky E E,Karakostas V,Kanamori H. 2000. A new observation of dynamically triggered regional seismicity:Earthquakes in Greece following the August 1999 Izmit,Turkey earthquake[J]. Geophys Res Lett,27(1):2741–2744.
    Cotton F,Coutant O. 1997. Dynamic stress variations due to shear faults in a plane-layered medium[J]. Geophys J Int,128(3):676–688.
    GCMT. 2021. 202105211348A Yunnan, China[DB/OL]. [2021-05-28]. https://www.globalcmt.org/.
    Harris R A. 1998. Introduction to special section:Stress triggers,stress shadows,and implications for seismic hazard[J]. J Geophys Res:Solid Earth,103(B10):24347–24358. doi: 10.1029/98JB01576
    Hartzell S H,Heaton T H. 1983. Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley,California,earthquake[J]. Bull Seism Soc Am,73(6A):1553–1583.
    Hill D P,Reasenberg P A,Michael A,Arabaz W J,Beroza G,Brumbaugh D,Brune J N,Castro R,Davis S,Depolo D,Ellsworth W L,Gomberg J,Harmsen S,House L,Jackson S M,Johnston M J S,Jones L,Keller R,Malone S,Munguia L,Nava S,Pechmann J C,Sanford A,Simpson R W,Smith R B,Stark M,Stickney M,Vidal A,Walter S,Wong V,Zollweg J. 1993. Seismicity remotely triggered by the magnitude 7.3 Landers,California,earthquake[J]. Science,260(5114):1617–1623. doi: 10.1126/science.260.5114.1617
    Kilb D,Gomberg J,Bodin P. 2000. Triggering of earthquake aftershocks by dynamic stresses[J]. Nature,408:570–574.
    Meyer M,Kearnes K. 2013. Introduction to special section:Intermediaries between science,policy and the market[J]. Sci Public Policy,40(4):423–429.
    Mohamad R,Darkal A N,Seber D,Sandvol E,Gocuez F,Barazangi M. 2000. Remote earthquake triggering along the Dead Sea fault in Syria following the 1995 Gulf of Aqaba earthquake (MS=7.3)[J]. Seismological Research Letters,71(1):47–52. doi: 10.1785/gssrl.71.1.47
    Muller G. 1985. The reflectivity method:A tutorial[J]. J Geophys Int,58(1/2/3):153–174.
    Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space[J]. Bull Seism Soc Am,82(2):1018–1040. doi: 10.1785/BSSA0820021018
    Pollitz F F,Sacks I S. 1997. The 1995 Kobe,Japan,earthquake:A long-delayed aftershock of the offshore 1944 Tonankai and 1946 Nankaido earthquakes[J]. Bull Seisml Soc Am,87(1):1–10.
    Reasenberg P A,Simpson R W. 1992. Response of regional seismicity to the static stress change produced by the Loma-Prieta earthquake[J]. Science,255(5052):1687–1690. doi: 10.1126/science.255.5052.1687
    Steacy S,Nalbant S S,Mccloskey J,Nostro C,Scotti O,Baumont D. 2005. Onto what planes should Coulomb stress perturbations be resolved?[J]. J Geophys Res,110(B5):B05S15.
    Stein R S,King G C,Lin J. 1994. Stress triggering of the 1994 M6.7 Northridge,California,earthquake by its predecessors[J]. Science,265(5177):1432–1435. doi: 10.1126/science.265.5177.1432
    Toda S,Stein R S,Reasenberg P A,Dieterich J H,Yoshida A. 1998. Stress transferred by the 1995 MW6.9 Kobe,Japan,shock:Effect on aftershocks and future earthquake probabilities[J]. J Geophys Res:Solid Earth,103(B10):24543–24565. doi: 10.1029/98JB00765
    USGS. 2021. M6.1: 25 km NW of Dali, China[DB/OL]. [2021-05-28]. https://earthquake.usgs.gov/earthquakes/eventpage/us7000e532/moment-tensor.
    Wu C Q,Peng Z G,Wang W J,Chen Q F. 2011. Dynamic triggering of shallow earthquakes near Beijing,China[J]. Geophys J Int,185(3):1321–1334.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (246) PDF downloads(107) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint