Mao S R,Shi S P,Yu Z J,Su M Y,Li S,He J X,Fu H,Zhang Q. 2023. A seismic data denoising method based on complete ensemble empirical mode decomposition with adaptive noise and Hurst exponent. Acta Seismologica Sinica45(2):258−270. DOI: 10.11939/jass.20210165
Citation: Mao S R,Shi S P,Yu Z J,Su M Y,Li S,He J X,Fu H,Zhang Q. 2023. A seismic data denoising method based on complete ensemble empirical mode decomposition with adaptive noise and Hurst exponent. Acta Seismologica Sinica45(2):258−270. DOI: 10.11939/jass.20210165

A seismic data denoising method based on complete ensemble empirical mode decomposition with adaptive noise and Hurst exponent

More Information
  • Received Date: October 25, 2021
  • Revised Date: March 24, 2022
  • Available Online: December 12, 2022
  • Published Date: March 14, 2023
  • In seismic observation, seismic data generally contain ambient noise, which reducesthe efficiency of seismic analysis. Traditional denoising methods usually need a priori knowledge of noise, and some effective data will be lost when filtering. To solve this problem, this paper proposes a seismic data denoising method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and Hurst exponent. Firstly, the signal is decomposed into a series intrinsic mode functions (IMF) by CEEMDAN method. Secondly, the Hurst exponent is used to identify the filtered IMF component. Finally, the IMF component of seismic data is reconstructed to realize data denoising. Compared with the denoising effect of traditional methods, the filtering ability of this method for low SNR waveforms is improved by 32%, and the filtering ability for high SNR waveforms is 6 times higher. At the same time, as shown in the denoising results of geomagnetic data, this method can completely filter subway noise from geomagnetic signal waveform.
  • 蔡剑华,肖晓. 2015. 基于小波自适应阈值去噪的MT信号处理方法[J]. 地球物理学进展,30(6):2433–2439. doi: 10.6038/pg20150601
    Cai J H,Xiao X. 2015. Method of processing magnetotelluric signal based on the adaptive threshold wavelet[J]. Progress in Geophysics,30(6):2433–2439 (in Chinese).
    陈学华,贺振华,黄德济. 2008. 广义S变换及其时频滤波[J]. 信号处理,24(1):28–31. doi: 10.3969/j.issn.1003-0530.2008.01.007
    Chen X H,He Z H,Huang D J. 2008. Generalized S transform and its time-frequency filtering[J]. Signal Processing,24(1):28–31 (in Chinese).
    韩卫雪,周亚同,池越. 2018. 基于深度学习卷积神经网络的地震数据随机噪声去除[J]. 石油物探,57(6):862–869. doi: 10.3969/j.issn.1000-1441.2018.06.008
    Han W X,Zhou Y T,Chi Y. 2018. Deep learning convolutional neural networks for random noise attenuation in seismic data[J]. Geophysical Prospecting for Petroleum,57(6):862–869 (in Chinese).
    牛永效. 2017. 基于频率及f-k域联合应用的地震波去噪技术研究[J]. 铁道标准设计,61(2):47–49.
    Niu Y X. 2017. Research on seismic data noise reduction based on combined application of frequency and f-k domain filter[J]. Railway Standard Design,61(2):47–49 (in Chinese).
    孙月. 2012. 基于广义S变换和阈值函数的地震信号去噪研究[D]. 长春: 吉林大学: 19–26.
    Sun Y. 2012. Seismic Signal Denoising Research Based on Generalized S Transformation and Threshold Function[D]. Changchun: Jilin University: 19–26 (in Chinese).
    万光南. 2014. f-k滤波在压制面波噪声中的应用[J]. 中州煤炭,(2):99–101.
    Wan G N. 2014. Application of f-k filtering in noise suppression of surface wave[J]. Zhongzhou Coal,(2):99–101 (in Chinese).
    杨凯,刘伟. 2012. 基于改进EMD的地震信号去噪[J]. 西南石油大学学报(自然科学版),34(4):75–82.
    Yang K,Liu W. 2012. Random noise attenuation of seismic signal based on improved EMD[J]. Journal of Southwest Petroleum University (Science &Technology Edition),34(4):75–82 (in Chinese).
    张杏莉,卢新明,贾瑞生,阚淑婷. 2018. 基于变分模态分解及能量熵的微震信号降噪方法[J]. 煤炭学报,43(2):356–363. doi: 10.13225/j.cnki.jccs.2017.4153
    Zhang X L,Lu X M,Jia R S,Kan S T. 2018. Micro-seismic signal denoising method based on variational mode decomposition and energy entropy[J]. Journal of China Coal Society,43(2):356–363 (in Chinese).
    Chen K,Sacchi M D. 2015. Robust reduced-rank filtering for erratic seismic noise attenuation[J]. Geophysics,80(1):V1–V11.
    Hurst H E. 1951. Long-term storage capacity of reservoirs[J]. Trans Am Soc Civ Eng,116(1):770–799. doi: 10.1061/TACEAT.0006518
    Liu W,Cao S Y,Chen Y K. 2016. Seismic time-frequency analysis via empirical wavelet transform[J]. IEEE Geosci Remote Sens Lett,13(1):28–32. doi: 10.1109/LGRS.2015.2493198
    Lu Y,Huang Y M,Xue W,Zhang G B. 2019. Seismic data processing method based on wavelet transform for denoising[J]. Cluster Comput,22(3):6609–6620.
    Torres M E, Colominas M A, Schlotthauer G, Flandrin P. 2011. A complete ensemble empirical mode decomposition with adaptive noise[C]//2011 IEEE International Conference on Acoustics, Speech and Signal ProcessingICASSP). Prague: IEEE: 4144–4147.
    Wang Y Q, Peng Z M, He Y M. 2016. Time-frequency representation for seismic data using sparse S transform[C]//2016 2nd IEEE International Conference on Computer and CommunicationsICCC). Chengdu: IEEE: 1923–1926.
    Zhang C,Li Y,Lin H B,Yang B J. 2015. Signal preserving and seismic random noise attenuation by Hurst exponent based time-frequency peak filtering[J]. Geophys J Int,203(2):901–909. doi: 10.1093/gji/ggv340
  • Related Articles

Catalog

    Article views (408) PDF downloads (109) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return