Volume 45 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Hao A W,Zhang H J,Han S C,Gao L. 2023. Joint inversion of multi-station receiver functions and gravity data for imaging Moho variations and average crustal vP/vS ratios. Acta Seismologica Sinica,45(1):1−16 doi: 10.11939/jass.20210179
Citation: Hao A W,Zhang H J,Han S C,Gao L. 2023. Joint inversion of multi-station receiver functions and gravity data for imaging Moho variations and average crustal vP/vS ratios. Acta Seismologica Sinica45(1):1−16 doi: 10.11939/jass.20210179

Joint inversion of multi-station receiver functions and gravity data for imaging Moho variations and average crustal vP/vS ratios

doi: 10.11939/jass.20210179
  • Received Date: 2021-11-23
  • Rev Recd Date: 2022-03-17
  • Available Online: 2022-09-01
  • Publish Date: 2023-01-17
  • Crustal thickness and vP/vS ratio are two important parameters for understanding crustal structure and composition, which can help to study regional tectonics. Receiver function analysis has been widely used for determining crustal thickness and vP/vS ratio by the H-κ method or the H-κ-c method. However, it can only acquire average crustal thickness and vP/vS ratio beneath each seismic station, but cannot constrain their lateral variations among seisimic stations due to their sparse and irregular distribution. On the other hand, the gravity data has been widely used to derive the Moho variaitons, which has a good coverage and resolution laterally but poor resolution vertically. Therefore, in this study we have developed a new joint inversion method of receiver functions and gravity data to simultaneously invert for variations of Moho depths and average crustal vP/vS ratios in a region. The method takes advantage of complementary strengths of receiver functions and gravity data, and can simultaneously fit all receiver functions and gravity data in the region. The synthetic tests show that the proposed joint inversion method produces more reliable results than only receiver function analysis, especially for the crustal thickness.


  • loading
  • [1]
    Feng R. 1986. A computation method of potential field with three-dimensional density and magnetization distributions[J]. Acta Geophysica Sinica,29(4):399–406 (in Chinese).
    Guo L H,Meng X H,Shi L,Chen Z X. 2012. Preferential filtering method and its application to Bouguer gravity anomaly of Chinese continent[J]. Chinese Journal of Geophysics,55(12):4078–4088 (in Chinese).
    Song T,Shen X Z,Mei X P. 2020. Constraining Moho characteristics with frequency-dependence of receiver function and its application[J]. Acta Seismologica Sinica,42(2):135–150 (in Chinese).
    Zhang H S,Tian X B,Teng J W. 2009. Estimation of crustal vP/vS with dipping Moho from receiver functions[J]. Chinese Journal of Geophysics,52(5):1243–1252 (in Chinese).
    Zhang S,Meng X H. 2013. Constraint interface inversion with variable density model[J]. Progress in Geophysics,28(4):1714–1720 (in Chinese).
    Zhang X M,Fu L H,Zhang H J,Peng J M. 2019. Reconstruction of natural earthquake data based on Orthogonal Rank-one Matrix Pursuit and its application to dense seismic array around the San Jacinto fault zone in California[J]. Chinese Journal of Geophysics,62(4):1427–1439 (in Chinese).
    Aitken A R A. 2010. Moho geometry gravity inversion experiment (MoGGIE):A refined model of the Australian Moho,and its tectonic and isostatic implications[J]. Earth Planet Sci Lett,297(1/2):71–83.
    Aitken A R A,Salmon M L,Kennett B L N. 2013. Australia’s Moho:A test of the usefulness of gravity modelling for the determination of Moho depth[J]. Tectonophysics,609:468–479. doi: 10.1016/j.tecto.2012.06.049
    Aster R C, Borchers B, Thurber C H. 2013. Parameter Estimation and Inverse Problems[M]. 2nd ed. Burlington, MA, USA: Academic Press: 93–95.
    Barbosa V C F,Silva J B C,Medeiros W E. 1999. Stable inversion of gravity anomalies of sedimentary basins with nonsmooth basement reliefs and arbitrary density contrast variations[J]. Geophysics,64(3):754–764. doi: 10.1190/1.1444585
    Chai C P,Ammon C J,Maceira M,Herrmann R B. 2015. Inverting interpolated receiver functions with surface wave dispersion and gravity:Application to the western U.S. and adjacent Canada and Mexico[J]. Geophys Res Lett,42(11):4359–4366. doi: 10.1002/2015GL063733
    Chakravarthi V,Sundararajan N. 2007. 3D gravity inversion of basement relief:A depth-dependent density approach[J]. Geophysics,72(2):I23–I32. doi: 10.1190/1.2431634
    Cordell L,Henderson R G. 1968. Iterative three-dimensional solution of gravity anomaly data using a digital computer[J]. Geophysics,33(4):596–601. doi: 10.1190/1.1439955
    Feng J,Meng X H,Chen Z X,Zhang S. 2014. Three-dimensional density interface inversion of gravity anomalies in the spectral domain[J]. J Geophys Eng,11(3):035001. doi: 10.1088/1742-2132/11/3/035001
    Guo L H,Gao R,Shi L,Huang Z R,Ma Y W. 2019. Crustal thickness and Poisson’s ratios of South China revealed from joint inversion of receiver function and gravity data[J]. Earth Planet Sci Lett,510:142–152. doi: 10.1016/j.jpgl.2018.12.039
    Han S C,Zhang H J,Xin H L,Shen W S,Yao H J. 2021. USTClitho2.0:Updated unified seismic tomography models for continental China lithosphere from joint inversion of body-wave arrival times and surface-wave dispersion data[J]. Seismol Res Lett,93(1):201–215.
    He R Z,Shang X F,Yu C Q,Zhang H J,van der Hilst R D. 2014. Detailed Moho depth mapping of continental China by receiver function analysis[J]. Geophys J Int,199:1910–1918. doi: 10.1093/gji/ggu365
    Hu S Q,Jiang X H,Zhu L P,Yao H J. 2019. Wavefield reconstruction of teleseismic receiver function with the stretching-and-squeezing interpolation method[J]. Seismol Res Lett,90(2A):716–726. doi: 10.1785/0220180197
    Julià J,Mejía J. 2004. Thickness and vP/vS ratio variation in the Iberian crust[J]. Geophys J Int,156(1):59–72. doi: 10.1111/j.1365-246X.2004.02127.x
    Li J T,Song X D,Wang P,Zhu L P. 2019. A generalized H-κ method with harmonic corrections on Ps and its crustal multiples in receiver functions[J]. J Geophys Res:Solid Earth,124(4):3782–3801. doi: 10.1029/2018JB016356
    Li Y G,Oldenburg D W. 1998. 3-D inversion of gravity data[J]. Geophysics,63(1):109–119. doi: 10.1190/1.1444302
    Li Y H,Gao M T,Wu Q J. 2014. Crustal thickness map of the Chinese mainland from teleseismic receiver functions[J]. Tectonophysics,611:51–60. doi: 10.1016/j.tecto.2013.11.019
    Lowry A R,Pérez-Gussinyé M. 2011. The role of crustal quartz in controlling Cordilleran deformation[J]. Nature,471(7338):353–357. doi: 10.1038/nature09912
    Maceira M,Ammon C J. 2009. Joint inversion of surface wave velocity and gravity observations and its application to central Asian basins shear velocity structure[J]. J Geophys Res:Solid Earth,114(B2):B02314.
    Niu F L,Bravo T,Pavlis G,Vernon F,Rendon H,Bezada M,Levander A. 2007. Receiver function study of the crustal structure of the southeastern Caribbean plate boundary and Venezuela[J]. J Geophys Res:Solid Earth,112(B11):B11308. doi: 10.1029/2006JB004802
    Oldenburg D W. 1974. The inversion and interpretation of gravity anomalies[J]. Geophysics,39(4):526–536. doi: 10.1190/1.1440444
    Owens T J,Zandt G. 1997. Implications of crustal property variations for models of Tibetan Plateau evolution[J]. Nature,387(6628):37–43. doi: 10.1038/387037a0
    Paige C C,Saunders M A. 1982. LSQR:An algorithm for sparse linear equations and sparse least squares[J]. CAM Trans Math Softw,8(1):43–71. doi: 10.1145/355984.355989
    Parker R L. 1973. The rapid calculation of potential anomalies[J]. Geophys J R astr Soc,31(4):447–455. doi: 10.1111/j.1365-246X.1973.tb06513.x
    Parker R L. 1974. Best bounds on density and depth from gravity data[J]. Geophysics,39(5):644–649. doi: 10.1190/1.1440454
    Pavlis G L. 2011. Three-dimensional,wavefield imaging of broadband seismic array data[J]. Comput Geosci,37(8):1054–1066. doi: 10.1016/j.cageo.2010.11.015
    Shi L,Guo L H,Ma Y W,Li Y H,Wang W L. 2018. Estimating crustal thickness and vP/vS ratio with joint constraints of receiver function and gravity data[J]. Geophys J Int,213(2):1334–1344. doi: 10.1093/gji/ggy062
    Silva J B,Costa D C,Barbosa V C. 2006. Gravity inversion of basement relief and estimation of density contrast variation with depth[J]. Geophysics,71(5):J51–J58. doi: 10.1190/1.2236383
    Song P H,Zhang X M,Liu Y S,Teng J W. 2017. Moho imaging based on receiver function analysis with teleseismic wavefield reconstruction:Application to South China[J]. Tectonophysics,718:118–131. doi: 10.1016/j.tecto.2017.05.031
    Syracuse E M,Maceira M,Prieto G A,Zhang H J,Ammon C J. 2016. Multiple plates subducting beneath Colombia,as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data[J]. Earth Planet Sci Lett,444:139–149. doi: 10.1016/j.jpgl.2016.03.050
    Syracuse E M,Zhang H J,Maceira M. 2017. Joint inversion of seismic and gravity data for imaging seismic velocity structure of the crust and upper mantle beneath Utah,United States[J]. Tectonophysics,718:105–117. doi: 10.1016/j.tecto.2017.07.005
    Tao K,Liu T Z,Ning J Y,Niu F L. 2014. Estimating sedimentary and crustal structure using wavefield continuation:Theory,techniques and applications[J]. Geophys J Int,197(1):443–457. doi: 10.1093/gji/ggt515
    Tian X B,Zhang Z J. 2013. Bulk crustal properties in NE Tibet and their implications for deformation model[J]. Gondwana Res,24(2):548–559. doi: 10.1016/j.gr.2012.12.024
    Zhang H J,Maceira M,Roux P,Thurber C. 2014. Joint inversion of body-wave arrival times and surface-wave dispersion for three-dimensional seismic structure around SAFOD[J]. Pure Appl Geophys,171(11):3013–3022. doi: 10.1007/s00024-014-0806-y
    Zhang J H,Zheng T Y. 2015. Receiver function imaging with reconstructed wavefields from sparsely scattered stations[J]. Seismol Res Lett,86(1):165–172. doi: 10.1785/0220140028
    Zhao Y,Guo L H,Guo Z,Chen Y J,Shi L,Li Y H. 2020. High resolution crustal model of SE Tibet from joint inversion of seismic P-wave travel-times and Bouguer gravity anomalies and its implication for the crustal channel flow[J]. Tectonophysics,792:228580. doi: 10.1016/j.tecto.2020.228580
    Zhu L P,Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions[J]. J Geophys Res:Solid Earth,105(B2):2969–2980. doi: 10.1029/1999JB900322
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (623) PDF downloads(212) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint