Citation: | Wang L W,Zhang Y,Zhang X G,Hu Z. 2023. Characteristics of subway stray current in geoelectrical resistivity observation. Acta Seismologica Sinica,45(2):285−301 doi: 10.11939/jass.20210197 |
[1] |
Dong L,Yao Z L,Ge C G,Shi C J,Chen J Z. 2021. Fourier analysis of the fluctuation characteristics of pipe-to-soil potential under metro stray current interference[J]. Surface Technology,50(2):294–303 (in Chinese).
|
[2] |
Du X B,Ma Z H,Ye Q,Tan D C,Chen J Y. 2006. Anisotropic changes in apparent resistivity associated with strong earthquakes[J]. Progress in Geophysics,21(1):93–100 (in Chinese).
|
[3] |
Gui X T,Guan H P,Dai J A. 1989. The short-term and immediate anomalous pattern recurrences of the apparent resistivity before the Tangshan and Songpan earthquakes of 1976[J]. Northwestern Seismological Journal,11(4):71–75 (in Chinese).
|
[4] |
Hu X M. 2011. Analysis on influence scope of urban rail transit on buried pipelines[J]. Modern Urban Transit,(3):74–76 (in Chinese).
|
[5] |
Li J M. 2005. Geoelectric Field and Electrical Exploration[M]. Beijing: Geological Publishing House: 60–67 (in Chinese).
|
[6] |
Li L,Liu N K,Zeng W,Shao H F. 2019. Distribution of stray current in rail transit under complex geological conditions[J]. Guangdong Electric Power,32(8):133–140 (in Chinese).
|
[7] |
Lin J,Tang H,Yu H X. 2002. Protection of stray current corrosion in metro[J]. Journal of Building Materials,5(1):72–76 (in Chinese).
|
[8] |
Liu G X. 2005. The Principle and Method of Electrical Exploration[M]. Beijing: Geological Publishing House: 7–13 (in Chinese).
|
[9] |
Liu W Q. 2014. Interference corrosion hazards of subway stray currents on buried jet fuel metal pipeline[J]. Total Corrosion Control,28(11):29–32 (in Chinese).
|
[10] |
Ma Q Z. 2014. Enlightment of the success or failure prediction for some large earthquakes at home and abroad[J]. Acta Seismologica Sinica,36(3):500–513 (in Chinese).
|
[11] |
Mao X J,Yang L Y,Qian J D. 2014. Characteristics of the influence coefficient in the cases of deeply-buried configurations for geoelectrical resistivity observation[J]. Acta Seismologica Sinica,36(4):678–685 (in Chinese).
|
[12] |
Mei J W,Lin G S. 2017. Analysis of metro stray current under multi-train operation[J]. Electric Railway,28(4):68–70 (in Chinese).
|
[13] |
Nie Y A,Ba Z N,Nie Y. 2010. Study on buried electrode resistivity monitoring system[J]. Acta Seismologica Sinica,32(1):33–40 (in Chinese).
|
[14] |
Qian F Y,Zhao Y L,Yu M M,Wang Z X,Liu X W,Chang S M. 1982. Geoelectrical resistivity anomalies before earthquake[J]. Science in China:Series B,(9):831–839 (in Chinese).
|
[15] |
Qian J D. 1993. A study on the changes in geoelectrical resistivity associated with preparatory process of great earthquakes in China[J]. Earthquake Research in China,9(4):341–350 (in Chinese).
|
[16] |
Qian J D,Ma Q Z,Li S N. 2013. Further study on the anomalies in apparent resistivity in the NE configuration at Chengdu station associated with Wenchuan MS8.0 earthquake[J]. Acta Seismologica Sinica,35(1):4–17 (in Chinese).
|
[17] |
Tantai L Y,Han X Q,Wang L,Yuan T J. 2020. Modeling and simulation of stray current in subway with multi-train operation[J]. Electrical Measurement &Instrumentation,57(22):7–16 (in Chinese).
|
[18] |
Wang C L,Ma C Y,Wang Z,Pan C D,Wang Y Y. 2007. Analysis of stray current in metro DC traction power system[J]. Urban Mass Transit,10(3):51–53 (in Chinese).
|
[19] |
Wang L W,Zhang Y,Zhang S Z,Yan R,Wang Z Y,Zhang X G,Hu Z. 2015. The status of deep-well geo-electrical resistivity observation in China[J]. Seismological and Geomagnetic Observation and Research,36(2):95–102 (in Chinese).
|
[20] |
Wang L W,Zhang Y,Zhang X G,Hu Z,Wang Z Y,Ma X X. 2019. AC geo-electrical resistivity observation method and experimental observation[J]. Journal of Geodesy and Geodynamics,39(7):738–742 (in Chinese).
|
[21] |
Wang M. 2005. Rail potential and stray current of DC traction power system[J]. Urban Mass Transit,8(3):24–26 (in Chinese).
|
[22] |
Zhang S Z,Shi H,Wang L W,Hu Z,Liu D P,Wei L S,Ju Y. 2013. Test analysis on disturbances caused by urban rail transit at geoelectric stations and measures to reduce its influence[J]. Acta Seismologica Sinica,35(1):117–124 (in Chinese).
|
[23] |
Zhang X D,Jiang H K,Li Z Y,Lu X,An Y R. 2011. The revelation of Wenchuan earthquake for earthquake forecast[J]. Journal of Engineering Studies,3(4):309–320 (in Chinese).
|
[24] |
Zhang Y,Zhang X G,Wang L W,Ma X X,Zhao Q F,Yuan S J,Wang Z Y. 2016. A new AC geo-electrical resistivity observation system and experimental observation in Jiangning seismic station[J]. Acta Seismologica Sinica,38(5):807–810 (in Chinese).
|
[25] |
China Earthquake Administration. 2009. DB/T 33.1−2009 The Method of Earthquake-Related Geoelectrical Monitoring: Geoelectrical Resistivity Observation: Part 1: Single Separation Configuration[S]. Beijing: Standards Press of China: 3 (in Chinese).
|
[26] |
Zhu F,Li J C,Zeng H B,Qiu R Q. 2018. Influence of rail-to-ground resistance of urban transit systems on distribution characteristics of stray current[J]. High Voltage Engineering,44(8):2738–2745 (in Chinese).
|
[27] |
Lu J,Xie T,Li M,Wang Y L,Ren Y X,Gao S D,Wang L W,Zhao J L. 2016. Monitoring shallow resistivity changes prior to the 12 May 2008 MS8.0 Wenchuan earthquake on the Longmen Shan tectonic zone,China[J]. Tectonophysics,675:244–257. doi: 10.1016/j.tecto.2016.03.006
|