Wei D L,Wang Y W,Wang Z F,Liao J A,Zhao D K. 2022. A fast estimation method of earthquake magnitude based on convolutional neural networks. Acta Seismologica Sinica44(2):316−326. DOI: 10.11939/jass.20210198
Citation: Wei D L,Wang Y W,Wang Z F,Liao J A,Zhao D K. 2022. A fast estimation method of earthquake magnitude based on convolutional neural networks. Acta Seismologica Sinica44(2):316−326. DOI: 10.11939/jass.20210198

A fast estimation method of earthquake magnitude based on convolutional neural networks

More Information
  • Received Date: November 04, 2021
  • Revised Date: January 03, 2022
  • Accepted Date: March 08, 2022
  • Available Online: April 21, 2022
  • Published Date: April 23, 2022
  • Earthquake early warning (EEW) is an effective approach to reduce human casualty and economic loss resulted from destructive earthquakes. Quick and accurate magnitude estimation after an earthquake is an important part of EEW, and the traditional approaches of magnitude estimation based on empirical parameters have their limits in accuracy and timeliness. This paper proposed a multi-fully connected convolutional neural network to quickly estimate the magnitude based on the information from a single station. The frequency-domain information from 3 065 earthquakes recorded by Japan’s KiK-net and K-NET networks between 1997 and 2019 (arriving waves corresponding to the selected data ranging from 3 s to 9 s), together with the corresponding information on hypocentral distance, focal depth, and site conditions (vS30) are used to train and validate the proposed model. The validation results demonstrate that the magnitude estimate accuracy is 89.92% even using as little as 3 s of arriving waves and the accuracy improves as longer duration of arriving waves is used. When 9 s of arriving waves are used, the accuracy increases to 96.08%. Comparison with the traditional Pd method suggests that the proposed approach in this study has smaller mean and standard deviation of the absolute estimation error, thus the proposed method has better accuracy and timeliness and would greatly enhance the disaster mitigation effects of the EEW systems.
  • 陈运泰. 2009. 地震预测:回顾与展望[J]. 中国科学:D辑,39(12):1633–1658.
    Chen Y T. 2009. Earthquake prediction:Retrospect and prospect[J]. Science in China:Series D,39(12):1633–1658 (in Chinese).
    李山有. 2018. 走近地震预警[J]. 防灾博览,(2):14–23.
    Li S Y. 2018. Approaching the earthquake early warning[J]. Overview of Disaster Prevention,(2):14–23 (in Chinese).
    马强. 2008. 地震预警技术研究及应用[D]. 哈尔滨: 中国地震局工程力学研究所: 96–102.
    Ma Q. 2008. Study and Application on Earthquake Early Warning[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 96–102 (in Chinese).
    王延伟,李小军,曹振中,兰景岩,刘娟. 2020. 基于KiK-net井下基岩强震动记录的持续地震预警震级估算方法[J]. 地震工程与工程振动,40(4):42–52.
    Wang Y W,Li X J,Cao Z Z,Lan J Y,Liu J. 2020. Continuous estimation magnitude for earthquake early warning based on KiK-net borehole bedrock strong motions[J]. Earthquake Engineering and Engineering Dynamics,40(4):42–52 (in Chinese).
    于子叶,储日升,盛敏汉. 2018. 深度神经网络拾取地震P和S波到时[J]. 地球物理学报,61(12):4873–4886. doi: 10.6038/cjg2018L0725
    Yu Z Y,Chu R S,Sheng M H. 2018. Pick onset time of P and S phase by deep neural network[J]. Chinese Journal of Geophysics,61(12):4873–4886 (in Chinese).
    Allen R M,Kanamori H. 2003. The potential for earthquake early warning in southern California[J]. Science,300(5620):786–789. doi: 10.1126/science.1080912
    Allen R M,Gasparini P,Kamigaichi O,Böse M. 2009. The status of earthquake early warning around the world:An introductory overview[J]. Seismol Res Lett,80(5):682–693. doi: 10.1785/gssrl.80.5.682
    Asano K,Iwata T. 2012. Source model for strong ground motion generation in the frequency range 0.1−10 Hz during the 2011 Tohoku earthquake[J]. Earth Planets Space,64(12):1111–1123. doi: 10.5047/eps.2012.05.003
    Dokht R M H,Kao H,Visser R,Smith B. 2019. Seismic event and phase detection using time-frequency representation and convolutional neural networks[J]. Seismol Res Lett,90(2A):481–490. doi: 10.1785/0220180308
    Espinosa-Aranda J M,Cuellar A,Garcia A,Ibarrola G,Islas R,Maldonado S,Rodriguez F H. 2009. Evolution of the Mexican seismic alert system (SASMEX)[J]. Seismol Res Lett,80(5):694–706. doi: 10.1785/gssrl.80.5.694
    Geller R J. 1997. Earthquake prediction:A critical review[J]. Geophys J Int,131(3):425–450. doi: 10.1111/j.1365-246X.1997.tb06588.x
    Hinton G E,Salakhutdinov R R. 2006. Reducing the dimensionality of data with neural networks[J]. Science,313(5786):504–507. doi: 10.1126/science.1127647
    Hoshiba M,Kamigaichi O,Saito M,Tsukada S,Hamada N. 2008. Earthquake early warning starts nationwide in Japan[J]. Eos Trans Am Geophys Union,89(8):73–74.
    Lockman A B,Allen R M. 2005. Single-station earthquake characterization for early warning[J]. Bull Seismol Soc Am,95(6):2029–2039. doi: 10.1785/0120040241
    Lomax A,Michelini A,Jozinović D. 2019. An investigation of rapid earthquake characterization using single‐station waveforms and a convolutional neural network[J]. Seismol Res Lett,90(2A):517–529. doi: 10.1785/0220180311
    Melgar D,Crowell B W,Geng J H,Allen R M,Bock Y,Riquelme S,Hill E M,Protti M,Ganas A. 2015. Earthquake magnitude calculation without saturation from the scaling of peak ground displacement[J]. Geophys Res Lett,42(13):5197–5205. doi: 10.1002/2015GL064278
    Minson S E,Meier M A,Baltay A S,Hanks T C,Cochran E S. 2018. The limits of earthquake early warning:Timeliness of ground motion estimates[J]. Sci Adv,4(3):eaaq0504. doi: 10.1126/sciadv.aaq0504
    Mousavi S M,Beroza G C. 2020. A machine‐learning approach for earthquake magnitude estimation[J]. Geophys Res Lett,47(1):e2019GL085976.
    National Research Institute for Earth Science and Disaster Resilience. 2020. Strong-motion seismograph networks (K-NET, KiK-net)[EB/OL]. [2020-10-21]. https://www.kyoshin.bosai.go.jp/kyoshin/data/index_en.html.
    Peng C Y,Yang J S,Zheng Y,Zhu X Y,Xu Z Q,Chen Y. 2017. New τc regression relationship derived from all P wave time windows for rapid magnitude estimation[J]. Geophys Res Lett,44(4):1724–1731.
    Saad O M,Hafez A G,Soliman M S. 2020. Deep learning approach for earthquake parameters classification in earthquake early warning system[J]. IEEE Geosci Remote Sens Lett,18(7):1293–1297.
    Wang Y W,Li X J,Wang Z F,et al. 2021. Deep learning for P-wave arrival picking in earthquake early warning[J]. Earthq Eng Eng Vib,20(2):391–402. doi: 10.1007/s11803-021-2027-6
    Wolfe C J. 2006. On the properties of predominant-period estimators for earthquake early warning[J]. Bull Seismol Soc Am,96(5):1961–1965. doi: 10.1785/0120060017
    Wu Y M,Teng T. 2002. A virtual subnetwork approach to earthquake early warning[J]. Bull Seismol Soc Am,92(5):2008–2018. doi: 10.1785/0120010217
    Wu Y M,Kanamori H. 2005. Rapid assessment of damage potential of earthquakes in Taiwan from the beginning of P waves[J]. Bull Seismol Soc Am,95(3):1181–1185. doi: 10.1785/0120040193
    Wu Y M,Zhao L. 2006. Magnitude estimation using the first three seconds P‐wave amplitude in earthquake early warning[J]. Geophys Res Lett,33(16):L16312. doi: 10.1029/2006GL026871
    Zeynalov L,Polukhov I,Gölalmış M. 2013. Comparison of Azerbaijan and other seismic codes[J]. Earthq Resist Eng Struct IX,132:205–217.
    Zhu W Q,Beroza G C. 2019. PhaseNet:A deep-neural-network-based seismic arrival-time picking method[J]. Geophys J Int,216(1):261–273.
    Zollo A,Lancieri M,Nielsen S. 2006. Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records[J]. Geophys Res Lett,33(23):L23312. doi: 10.1029/2006GL027795
  • Related Articles

  • Cited by

    Periodical cited type(12)

    1. 杨磊,陈双贵,闫万生,张瑜,雷光,杨龙. 南北地震带北段及周边地区岩石圈磁场时空变化特征对地震活动的指示意义. 大地测量与地球动力学. 2024(03): 304-309 .
    2. 宋成科,张鹏涛,陈斌. 基于地磁场重复观测资料分析玛多M_W7.3地震前地磁场变化. 防灾科技学院学报. 2024(01): 38-46 .
    3. 陈政宇,倪喆,周思远,金云华,杨薪俊. 岩石圈磁场与地质构造和地震活动性之间的关系——以漾濞地震为例. 地震地质. 2024(02): 449-461 .
    4. 王朝景,李博,苏树朋. 基于多期累积岩石圈磁场变化分析唐山M_S5.1地震震磁异常. 地震研究. 2024(04): 517-527 .
    5. 李晨阳,池成全. 机器学习在地震观测异常数据提取中的应用. 海南师范大学学报(自然科学版). 2024(03): 348-356 .
    6. 张瑜,陈双贵,闫万生,雷光,杨磊,杨龙,马辉源,肖世堂,董兴洲,岳敏. 甘肃青海部分地区流动地磁场时空分布特征. 大地测量与地球动力学. 2023(01): 65-70 .
    7. 张瑜,陈双贵,马辉源,杨磊,雷光,肖世堂,闫万生,杨龙. 2019—2021年门源M_S6.9地震岩石圈磁场异常回溯分析. 华南地震. 2023(01): 46-54 .
    8. 张瑜,陈双贵,马辉源,闫万生,杨磊,雷光,杨龙,杜建清. 2021年5月22日玛多M_S 7.4地震周边地区岩石圈磁场变化及地震前后异常特征分析. 地震地磁观测与研究. 2023(03): 64-72 .
    9. 张海洋,苏树朋,赵慧琴. 2022年青海门源6.9级地震前岩石圈磁场异常变化分析. 地震工程学报. 2022(03): 735-743 .
    10. 蔡苏苏,陈斌. 中国大陆岩石圈震磁异常年变统计分析. 地震研究. 2022(04): 592-598 .
    11. 马永,张海江,高磊,陈志刚. 2021年玛多Ms7.4地震三维地壳速度结构与活动特征(英文). Applied Geophysics. 2022(04): 590-602+605 .
    12. 文丽敏,康国发,白春华,高国明. 南北地震带南段地壳磁异常与强震活动关系研究(英文). Applied Geophysics. 2021(03): 408-419+434 .

    Other cited types(1)

Catalog

    Article views (824) PDF downloads (97) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return