Citation: | Wei D L,Wang Y W,Wang Z F,Liao J A,Zhao D K. 2022. A fast estimation method of earthquake magnitude based on convolutional neural networks. Acta Seismologica Sinica,44(2):316−326. DOI: 10.11939/jass.20210198 |
陈运泰. 2009. 地震预测:回顾与展望[J]. 中国科学:D辑,39(12):1633–1658.
|
Chen Y T. 2009. Earthquake prediction:Retrospect and prospect[J]. Science in China:Series D,39(12):1633–1658 (in Chinese).
|
李山有. 2018. 走近地震预警[J]. 防灾博览,(2):14–23.
|
Li S Y. 2018. Approaching the earthquake early warning[J]. Overview of Disaster Prevention,(2):14–23 (in Chinese).
|
马强. 2008. 地震预警技术研究及应用[D]. 哈尔滨: 中国地震局工程力学研究所: 96–102.
|
Ma Q. 2008. Study and Application on Earthquake Early Warning[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 96–102 (in Chinese).
|
王延伟,李小军,曹振中,兰景岩,刘娟. 2020. 基于KiK-net井下基岩强震动记录的持续地震预警震级估算方法[J]. 地震工程与工程振动,40(4):42–52.
|
Wang Y W,Li X J,Cao Z Z,Lan J Y,Liu J. 2020. Continuous estimation magnitude for earthquake early warning based on KiK-net borehole bedrock strong motions[J]. Earthquake Engineering and Engineering Dynamics,40(4):42–52 (in Chinese).
|
于子叶,储日升,盛敏汉. 2018. 深度神经网络拾取地震P和S波到时[J]. 地球物理学报,61(12):4873–4886. doi: 10.6038/cjg2018L0725
|
Yu Z Y,Chu R S,Sheng M H. 2018. Pick onset time of P and S phase by deep neural network[J]. Chinese Journal of Geophysics,61(12):4873–4886 (in Chinese).
|
Allen R M,Kanamori H. 2003. The potential for earthquake early warning in southern California[J]. Science,300(5620):786–789. doi: 10.1126/science.1080912
|
Allen R M,Gasparini P,Kamigaichi O,Böse M. 2009. The status of earthquake early warning around the world:An introductory overview[J]. Seismol Res Lett,80(5):682–693. doi: 10.1785/gssrl.80.5.682
|
Asano K,Iwata T. 2012. Source model for strong ground motion generation in the frequency range 0.1−10 Hz during the 2011 Tohoku earthquake[J]. Earth Planets Space,64(12):1111–1123. doi: 10.5047/eps.2012.05.003
|
Dokht R M H,Kao H,Visser R,Smith B. 2019. Seismic event and phase detection using time-frequency representation and convolutional neural networks[J]. Seismol Res Lett,90(2A):481–490. doi: 10.1785/0220180308
|
Espinosa-Aranda J M,Cuellar A,Garcia A,Ibarrola G,Islas R,Maldonado S,Rodriguez F H. 2009. Evolution of the Mexican seismic alert system (SASMEX)[J]. Seismol Res Lett,80(5):694–706. doi: 10.1785/gssrl.80.5.694
|
Geller R J. 1997. Earthquake prediction:A critical review[J]. Geophys J Int,131(3):425–450. doi: 10.1111/j.1365-246X.1997.tb06588.x
|
Hinton G E,Salakhutdinov R R. 2006. Reducing the dimensionality of data with neural networks[J]. Science,313(5786):504–507. doi: 10.1126/science.1127647
|
Hoshiba M,Kamigaichi O,Saito M,Tsukada S,Hamada N. 2008. Earthquake early warning starts nationwide in Japan[J]. Eos Trans Am Geophys Union,89(8):73–74.
|
Lockman A B,Allen R M. 2005. Single-station earthquake characterization for early warning[J]. Bull Seismol Soc Am,95(6):2029–2039. doi: 10.1785/0120040241
|
Lomax A,Michelini A,Jozinović D. 2019. An investigation of rapid earthquake characterization using single‐station waveforms and a convolutional neural network[J]. Seismol Res Lett,90(2A):517–529. doi: 10.1785/0220180311
|
Melgar D,Crowell B W,Geng J H,Allen R M,Bock Y,Riquelme S,Hill E M,Protti M,Ganas A. 2015. Earthquake magnitude calculation without saturation from the scaling of peak ground displacement[J]. Geophys Res Lett,42(13):5197–5205. doi: 10.1002/2015GL064278
|
Minson S E,Meier M A,Baltay A S,Hanks T C,Cochran E S. 2018. The limits of earthquake early warning:Timeliness of ground motion estimates[J]. Sci Adv,4(3):eaaq0504. doi: 10.1126/sciadv.aaq0504
|
Mousavi S M,Beroza G C. 2020. A machine‐learning approach for earthquake magnitude estimation[J]. Geophys Res Lett,47(1):e2019GL085976.
|
National Research Institute for Earth Science and Disaster Resilience. 2020. Strong-motion seismograph networks (K-NET, KiK-net)[EB/OL]. [2020-10-21]. https://www.kyoshin.bosai.go.jp/kyoshin/data/index_en.html.
|
Peng C Y,Yang J S,Zheng Y,Zhu X Y,Xu Z Q,Chen Y. 2017. New τc regression relationship derived from all P wave time windows for rapid magnitude estimation[J]. Geophys Res Lett,44(4):1724–1731.
|
Saad O M,Hafez A G,Soliman M S. 2020. Deep learning approach for earthquake parameters classification in earthquake early warning system[J]. IEEE Geosci Remote Sens Lett,18(7):1293–1297.
|
Wang Y W,Li X J,Wang Z F,et al. 2021. Deep learning for P-wave arrival picking in earthquake early warning[J]. Earthq Eng Eng Vib,20(2):391–402. doi: 10.1007/s11803-021-2027-6
|
Wolfe C J. 2006. On the properties of predominant-period estimators for earthquake early warning[J]. Bull Seismol Soc Am,96(5):1961–1965. doi: 10.1785/0120060017
|
Wu Y M,Teng T. 2002. A virtual subnetwork approach to earthquake early warning[J]. Bull Seismol Soc Am,92(5):2008–2018. doi: 10.1785/0120010217
|
Wu Y M,Kanamori H. 2005. Rapid assessment of damage potential of earthquakes in Taiwan from the beginning of P waves[J]. Bull Seismol Soc Am,95(3):1181–1185. doi: 10.1785/0120040193
|
Wu Y M,Zhao L. 2006. Magnitude estimation using the first three seconds P‐wave amplitude in earthquake early warning[J]. Geophys Res Lett,33(16):L16312. doi: 10.1029/2006GL026871
|
Zeynalov L,Polukhov I,Gölalmış M. 2013. Comparison of Azerbaijan and other seismic codes[J]. Earthq Resist Eng Struct IX,132:205–217.
|
Zhu W Q,Beroza G C. 2019. PhaseNet:A deep-neural-network-based seismic arrival-time picking method[J]. Geophys J Int,216(1):261–273.
|
Zollo A,Lancieri M,Nielsen S. 2006. Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records[J]. Geophys Res Lett,33(23):L23312. doi: 10.1029/2006GL027795
|