Turn off MathJax
Article Contents
Dai D Q,Yang Z G,Sun L. 2022. Rupture process of the MS6.9 Menyuan,Qinghai, earthquake on January 8, 2022. Acta Seismologica Sinica,44(0):1−9 doi: 10.11939/jass.20220032
Citation: Dai D Q,Yang Z G,Sun L. 2022. Rupture process of the MS6.9 Menyuan,Qinghai, earthquake on January 8, 2022. Acta Seismologica Sinica44(0):1−9 doi: 10.11939/jass.20220032

Rupture process of the MS6.9 Menyuan,Qinghai, earthquake on January 8, 2022

doi: 10.11939/jass.20220032
  • Received Date: 2022-03-16
  • Rev Recd Date: 2022-07-25
  • Available Online: 2022-10-18
  • Based on the waveform data observed by the near field strong-motion stations, the earthquake rupture process can be quickly and stably inverted. This paper collected waveform data recorded by the strong-motion stations reconstructed in Qinghai during the implementation of the National Rapid Intensity Report and Seismic Early Warning Project. Based on these data, the rupture process of the Qinghai MS6.9 earthquake on January 8, 2022 was inverted by the iterative deconvolution and stacking method (IDS). The rupture model from inversion show that the rupture extends from the initial rupture point to a unilateral rupture in the southeast-east direction, with a duration of about 14 seconds (mainly focus on 2−8 seconds), a maximum slip of 3.6m, and a rupture length of about 20 km. The rupture extends longitudinally from the deep to the shallow, which is consistent with the surface rupture found in the field investigation. The spatial distribution of aftershock sequences shows significant segmentation characteristics, indicating complex tectonic transitions in the rupture zone. There is still the possibility of strong earthquakes in this area in the future.

     

  • loading
  • [1]
    Chen P S,Liu J S. 2014. A study of the relation between seismic magnitude and intensity by using the dislocation model[J]. Chinese Journal of Geophysics,18(3):183–195 (in Chinese).
    [2]
    Guo J Z,Wu J B. 2014. Historical significance of the great Haiyuan earthquake and discussion on measures for disaster reduction of great earthquakes:The Eightieth Anniversary of Haiyuan Earthquake[J]. Recent Developments in World Seismology,(12):2–5 (in Chinese).
    [3]
    Hu C Z, Yang P X, Li Z M, Huang S T, Zhao Y, Chen D, Xiong R W, Chen Q Y. Seismogenic mechanism of the 21 January 2016 Menyuan, Qinghai MS6.4 earthquake[J]. Chinese Journal of Geophysics (in Chinese). 2016, 59(5): 1637-1646, doi: 10.6038/cjg20160509(in Chinese).
    [4]
    Zheng X J,Zhang Y,Wang R J. 2017. Estimating the rupture process of the 8 August 2017 Jiuzhaigou earthquake by inverting strong-motion data with IDS method[J]. Chinese Journal of Geophysics,60(23):4421–4430 (in Chinese).
    [5]
    Zhao L Q,Sun X Y,Zhan Y,Yang H B,Wang Q L,Hao M,Liu X H. 2022. The seismogenic model of the Menyuan Ms6.9 earthquake on January 8,2022,Qinghai Province and segmented extensional characteristics of the Lenglonglin fault[J]. Chinese Journal of Geophysics,65(4):1536–1546 (in Chinese).
    [6]
    China Earthquake Administration. 2022. China Earthquake Administration released the intensity map of Ms 6.9 earthquake in Menyuan, Qinghai[EB/OL]. [2022-01-12]. https://www.cea.gov.cn/cea/xwzx/fzjzyw/5646200/index.html (in Chinese).
    [7]
    Zou J C,Shao S M,Jiang R F. 1994. Distribution and tectonic implications on the Gulang seismic landslide[J]. Earthquake Research in China,(2):168–174 (in Chinese).
    [8]
    Beroza G C. 1991. Near-source modeling of the Loma Prieta earthquake:Evidence for heterogeneous slip and implications for earthquake hazard[J]. Bull Seismol Soc Am,81(5):1603–1621. doi: 10.1785/bssa0810051603
    [9]
    Chousianitis K,Konca A O. 2021. Rupture process of the 2020 Mw7.0 Samos earthquake and its effect on surrounding active faults[J]. Geophys. Res. Lett.,48(14):e2021GL094162. doi: 10.1029/2021GL09416
    [10]
    Das S,Henry C. 2003. Spatial relation between main earthquake slip and its aftershock distribution[J]. Rev Geophys.,41(3):1013. doi: 10.1029/2021GL094162
    [11]
    Deng Y F,Shen W S,Xu T,Ritzwoller M H. 2015. Crustal layering in northeastern Tibet:a case study based on joint inversion of receiver functions and surface wave dispersion[J]. Geophys. J. Int.,203(1):692–706. doi: 10.1093/gji/ggv321
    [12]
    Duputel Z,Rivera L,Kanamori H,Hayes G. 2012. W phase source inversion for moderate to large earthquakes (1990-2010)[J]. Geophys J Int,189(2):1125–1147. doi: 10.1111/j.1365-246X.2012.05419.x
    [13]
    Kanamori H. and Rivera L 2008. Source inversion of W phase:speeding up seismic tsunami warning[J]. Geophys J Int,175(1):222–238. doi: 10.1111/j.1365-246X.2008.03887.x
    [14]
    Laske G, Masters G, Ma Z T, Pasyanos M. 2013. Update on CRUST1.0: A 1-degree Global Model of Earth's Crust[C]//Geophysical Research Abstracts, 15. Vienna: EGU: 2013-2658.
    [15]
    Li,Y,Jiang W,Li Y,Shen W,He,Li B,Li Q,Jiao Q and Tian Y. 2022. Coseismic Rupture Model and Tectonic Implications of the January 7 2022,Menyuan Mw 6.6 Earthquake Constraints from InSAR Observations and Field Investigation[J]. Remote Sens,14(9):2111. doi: 10.3390/rs14092111
    [16]
    Liu M, Li H Y, Peng Z G, Ouyang L B, Ma Y H, Ma J X, Liang Z J, Huang Y F, 2019. Spatial-temporal distribution of early aftershocks following the 2016 Ms 6.4 Menyuan, Qinghai, China Earthquake[J]. Tectonophysics, 766: 469-479, doi: /10.1016/j.tecto.2019.06.022.
    [17]
    Pan S Z,Niu F L. 2011. Large contrasts in crustal structure and composition between the Ordos plateau and the NE Tibetan plateau from receiver function analysis[J]. Earth Planet Sci Lett,303(3-4):291–298. doi: 10.1016/j.jpgl.2011.01.007
    [18]
    USGS. 2022. M6.6: Northern Qinghai, China [EB/OL]. [2022-01-07]. https://earthquake.usgs.gov/earthquakes/eventpage/us7000g9zq/finite-fault.
    [19]
    Wang Q,Niu F L,Gao Y,Chen Y T. 2016. Crustal structure and deformation beneath the NE margin of the Tibetan plateau constrained by teleseismic receiver function data[J]. Geophys J Int,204(1):167–179. doi: 10.1093/gji/ggv420
    [20]
    Wang R J. 1999. A simple orthonormalization method for stable and efficient computation of Green's functions[J]. Bull Seismol Soc Am,89(3):733–741. doi: 10.1785/bssa0890030733
    [21]
    Wells D L,Coppersmith K J. 1994. New empirical relationships among magnitude,rupture length,rupture width,rupture area,and surface displacement[J]. Bull Seismol Soc Am,84(4):974–1002. doi: 10.1785/BSSA0840040974
    [22]
    Yang H F, Wang D, Guo R M, Xie M Y, Y. Zang Y, Wang Y, Yao Q, Cheng C, An Y R, Zhang Y Y. 2022. Rapid report of the 8 January 2022 Ms6.9 Menyuan earthquake, Qinghai, China[J]. Earthquake Research Advances, 2(1), doi: 10.1016/j.eqrea.2022.100113.
    [23]
    Zhang Y,Wang R J,Zschau J,Chen Y T,Parolai S,Dahm T. 2014. Automatic imaging of earthquake rupture processes by iterative deconvolution and stacking of high rate GPS and strong motion seismograms[J]. J Geophys Res:Solid Earth,119(7):5633–5650. doi: 10.1002/2013JB010469
    [24]
    Zhang Y,Wang R J,Chen Y T. 2015. Stability of rapid finite‐fault inversion for the 2014 Mw 6.1 South Napa earthquake[J]. Geophys Res Lett,42(23):10,263–10,272. doi: 10.1002/2015gl066244
    [25]
    Zheng G,Wang H,Wright T J,Lou Y D,Zhang R,Zhang W X,Shi C,Huang J F,Wei N. 2017. Crustal Deformation in the India-Eurasia Collision Zone From 25 Years of GPS Measurements[J]. J Geophys Res:Solid Earth,22(11):9290–9312. doi: 10.1002/2017jb014465
    [26]
    Zheng X J,Zhang Y,Wang R J,Zhao L,Huang Q H. 2020. Automatic Inversions of Strong‐Motion Records for Finite‐Fault Models of Significant Earthquakes in and Around Japan[J]. J Geophys Res:Solid Earth,125(9):e2020JB019992. doi: 10.1029/2020jb019992
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (329) PDF downloads(92) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return