Citation: | Lang Z P,Yu R F,Xiao L,Fu L,Zhou J. 2022. An estimation model of high frequency attenuation coefficient of ground motion for local site. Acta Seismologica Sinica,44(0):1−10 doi: 10.11939/jass.20220053 |
[1] |
FU L,LI X J. 2017. The kappa (κ0) model of the Longmenshan region and its application to simulation of strong ground-motion by the Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics,60(8):2935–2947 (in Chinese).
|
[2] |
Zhu B H. 2016. Discussion on Influencing Factors of Kappa Value of Strong Earthquake Data [D]. Institute of Engineering Mechanics, China Earthquake Administration, 39–41 (in Chinese).
|
[3] |
ZHENG X,HU J J,XIE L L. 2019. High frequency reduction effect of ground motion in Yi-Shu fault zone based on sites of Shandong[J]. Journal of Harbin Institute of Technology,51(12):55–62 (in Chinese).
|
[4] |
Anderson J G,Hough S E. 1984. A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies[J]. Bulletin of the Seismological Society of America,74(5):1969–1993.
|
[5] |
Anderson J G,Humphrey J R. 1991. A least squares method for objective determination of earthquake source parameters[J]. Seismological Research Letters,62(3-4):201–209. doi: 10.1785/gssrl.62.3-4.201
|
[6] |
Anderson J G,Lee Y,Zeng Y. 1996. Control of strong motion by the upper 30 meters[J]. Bulletin of the Seismological Society of America,86(6):1749–1759.
|
[7] |
Atkinson G M. 1984. Attenuation of strong ground motion in Canada from a random vibrations approach[J]. Bulletin of the Seismological Society of America,74(6):2629–2653.
|
[8] |
Boore D M. 1983. Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra[J]. Bulletin of the Seismological Society of America,73(6A):1865–1894.
|
[9] |
Boore D M,Thompson E M,Cadet H. 2011. Regional correlations of VS and velocities averaged over depths less than and greater than 30 meters[J]. Bulletin of the Seismological Society of America,101(6):3046–3059. doi: 10.1785/0120110071
|
[10] |
Bora S S,Cotton F,Scherbaum F. 2017. Stochastic source,path and site attenuation parameters and associated variabilities for shallow crustal European earthquakes[J]. Bulletin of Earthquake Engineering,15(11):4531–4561. doi: 10.1007/s10518-017-0167-x
|
[11] |
Cabas A,Rodriguez‐Marek A,Bonilla L F. 2017. Estimation of site‐specific kappa (κ0)‐consistent damping values at KiK‐net sites to assess the discrepancy between laboratory‐based damping models and observed attenuation (of seismic waves) in the field[J]. Bulletin of the Seismological Society of America,107(5):2258–2271. doi: 10.1785/0120160370
|
[12] |
Castellaro S,Mulargia F,Rossi P L. 2008. VS:Proxy for seismic amplification?[J]. Seismological Research Letters,79(4):540–543. doi: 10.1785/gssrl.79.4.540
|
[13] |
Chandler A M,Lam N T K,Tsang H H. 2006. Near-surface attenuation modelling based on rock shear-wave velocity profile[J]. Soil Dynamics and Earthquake Engineering,26(11):1004–1014. doi: 10.1016/j.soildyn.2006.02.010
|
[14] |
Chang S C,Wen K L,Huang M W. 2019. The high-frequency decay parameter (Kappa) in Taiwan[J]. Pure and Applied Geophysics,176(11):4861–4879. doi: 10.1007/s00024-019-02219-y
|
[15] |
Drouet S,Cotton F,Guéguen P. 2010. VS,κ,regional attenuation and Mw from accelerograms:Application to magnitude 3–5 French earthquakes[J]. Geophysical Journal International,182(2):880–898. doi: 10.1111/j.1365-246X.2010.04626.x
|
[16] |
Edwards B,Fäh D,Giardini D. 2011. Attenuation of seismic shear wave energy in Switzerland[J]. Geophysical Journal International,185(2):967–984. doi: 10.1111/j.1365-246X.2011.04987.x
|
[17] |
Edwards B,Ktenidou O J,Cotton F. 2015. Epistemic uncertainty and limitations of the κ0 model for near-surface attenuation at hard rock sites[J]. Geophysical Journal International,202(3):1627–1645. doi: 10.1093/gji/ggv222
|
[18] |
Hanks T C. 1982. f max[J]. Bulletin of the Seismological Society of America,72(6A):1867–1879. doi: 10.1785/BSSA07206A1867
|
[19] |
Huang M W,Wen K L,Chang S C. 2017. The High‐Cut Parameter (Kappa) for the Near‐Surface Geology in and around the Taipei Basin,Taiwan[J]. Bulletin of the Seismological Society of America,107(3):1254–1264. doi: 10.1785/0120160070
|
[20] |
Kilb D,Biasi G,Anderson J. 2012. A comparison of spectral parameter kappa from small and moderate earthquakes using southern California ANZA seismic network data[J]. Bulletin of the Seismological Society of America,102(1):284–300. doi: 10.1785/0120100309
|
[21] |
Kishida T,Darragh R,KtenidouO J. 2014. Fourier spectra and kappa (κ0) estimates for rock stations in the nga-west2 project[J]. Engineering geology,202(4):1–13.
|
[22] |
Lai T S,Mittal H,Chao W A. 2016. A study on kappa value in Taiwan using borehole and surface seismic array[J]. Bulletin of the Seismological Society of America,106(4):1509–1517. doi: 10.1785/0120160004
|
[23] |
Laurendeau A,Cotton F,Ktenidou O J. 2013. Rock and stiff‐soil site amplification:Dependency on VS and kappa (κ0)[J]. Bulletin of the Seismological Society of America,103(6):3131–3148. doi: 10.1785/0120130020
|
[24] |
Lee V W,Trifunac M D. 2010. Should average shear-wave velocity in the top 30 m of soil be used to describe seismic amplification?[J]. Soil Dynamics and Earthquake Engineering,30(11):1250–1258. doi: 10.1016/j.soildyn.2010.05.007
|
[25] |
Silva W J,Wong I G,Darragh R B. 1998. Engineering characterization of earthquake strong ground motions in the Pacific Northwest[J]. Assessing Earthquake Hazards and Reducing Risk in the Pacific Northwest,1560:313–324.
|
[26] |
Stanko D, Markušić S, Ivančić I. 2017. Preliminary estimation of kappa parameter in Croatia[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 95(3): 032014.
|
[27] |
Van Houtte C,Drouet S,Cotton F. 2011. Analysis of the origins of κ (kappa) to compute hard rock to rock adjustment factors for GMPEs[J]. Bulletin of the Seismological Society of America,101(6):2926–2941. doi: 10.1785/0120100345
|
[28] |
Van Houtte C,Ktenidou O J,Larkin T. 2018. A continuous map of near-surface S-wave attenuation in New Zealand[J]. Geophysical Journal International,213(1):408–425. doi: 10.1093/gji/ggx559
|