Citation: | Lang Z P,Yu R F,Xiao L,Fu L,Zhou J. 2023. An estimation model of high frequency attenuation coefficient of ground motion for local site. Acta Seismologica Sinica,45(5):919−928. DOI: 10.11939/jass.20220053 |
When using the stochastic finite fault method for ground motion simulation, how to select reasonable parameters to describe the near-surface high-frequency attenuation characteristics of a specific local site has important practical significance for evaluating the correctness of ground motion simulation results. In the prediction of ground motion parameters of engineering sites, how to quickly determine the value of parameters is an urgent problem to be solved in practical applications. Firstly, we analyzed the correlation between the high-frequency attenuation coefficient κ0 of the site and the average shear wave velocity vS30. Then, based on the 546 κ0 coefficients calculated by domestic and foreign scholars, the root mean square value of κ0 in a certain time window was used to discuss its variation trend with the increase of the average shear wave velocity vS30.The results showed that although κ0 had obvious regional differences, its root mean square value showed a decreasing trend with the increase of vS30. In order to obtain a reasonable κ0 estimation model, the linear function, polynomial function, logarithmic linear function and log-log linear function were used to preliminarily fit the relationship between the root mean square value of κ0 and vS30. The results show that the logarithmic linear function can better describe the relationship between κ0 and vS30. Finally, based on the 477 data obtained from the screening, the model parameters were fitted by the least square method, and a practical model of κ0-vS30 suitable for engineering applications was obtained. The analysis of the applicability of the model shows that the κ0 estimation model constructed in this study can reasonably estimate the high-frequency attenuation of ground motion when predicting engineering site ground motion parameters.
傅磊,李小军. 2017. 龙门山地区的kappa(κ0)模型及汶川MS8.0地震的强地震动模拟[J]. 地球物理学报,60(8):2935–2947. doi: 10.6038/cjg20170803
|
Fu L,Li X J. 2017. The kappa (κ0) model of the Longmenshan region and its application to simulation of strong ground-motion by the Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics,60(8):2935–2947 (in Chinese).
|
郑旭,胡进军,谢礼立,周少辉,鹿子林. 2019. 基于山东省场地的沂沭断裂带地震动高频消减作用[J]. 哈尔滨工业大学学报,51(12):55–62. doi: 10.11918/j.issn.0367-6234.201901170
|
Zheng X,Hu J J,Xie L L,Zhou S H,Lu Z L. 2019. High frequency reduction effect of ground motion in Yi-Shu fault zone based on sites of Shandong[J]. Journal of Harbin Institute of Technology,51(12):55–62 (in Chinese).
|
朱百慧. 2016. 强震数据Kappa值影响因素的讨论[D]. 哈尔滨: 中国地震局工程力学研究所: 39−41.
|
Zhu B H. 2016. Discussion on Influencing Factors of Kappa Value of Strong Earthquake Data[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 39−41 (in Chinese).
|
Anderson J G,Hough S E. 1984. A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies[J]. Bull Seismol Soc Am,74(5):1969–1993.
|
Anderson J G,Humphrey J R. 1991. A least squares method for objective determination of earthquake source parameters[J]. Seismolo Res Lett,62(3/4):201–209.
|
Anderson J G,Lee Y,Zeng Y H,Day S. 1996. Control of strong motion by the upper 30 meters[J]. Bull Seismol Soc Am,86(6):1749–1759.
|
Atkinson G M. 1984. Attenuation of strong ground motion in Canada from a random vibrations approach[J]. Bull Seismol Soc Am,74(6):2629–2653.
|
Boore D M. 1983. Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra[J]. Bull Seismol Soc Am,73(6A):1865–1894.
|
Boore D M,Thompson E M,Cadet H. 2011. Regional correlations of vS30 and velocities averaged over depths less than and greater than 30 meters[J]. Bull Seismol Soc Am,101(6):3046–3059. doi: 10.1785/0120110071
|
Bora S S,Cotton F,Scherbaum F,Edwards B,Traversa P. 2017. Stochastic source,path and site attenuation parameters and associated variabilities for shallow crustal European earthquakes[J]. Bull Earthq Eng,15(11):4531–4561. doi: 10.1007/s10518-017-0167-x
|
Cabas A,Rodriguez-Marek A,Bonilla L F. 2017. Estimation of site-specific kappa (κ0)-consistent damping values at KiK-net sites to assess the discrepancy between laboratory-based damping models and observed attenuation (of seismic waves) in the field[J]. Bull Seismol Soc Am,107(5):2258–2271. doi: 10.1785/0120160370
|
Castellaro S,Mulargia F,Rossi P L. 2008. VS30:Proxy for seismic amplification?[J]. Seismol Res Lett,79(4):540–543. doi: 10.1785/gssrl.79.4.540
|
Chandler A M,Lam N T K,Tsang H H. 2006. Near-surface attenuation modelling based on rock shear-wave velocity profile[J]. Soil Dyn Earthq Eng,26(11):1004–1014. doi: 10.1016/j.soildyn.2006.02.010
|
Chang S C,Wen K L,Huang M W,Kuo C H,Lin C M,Chen C T,Huang J Y. 2019. The high-frequency decay parameter (Kappa) in Taiwan[J]. Pure Appl Geophys,176(11):4861–4879. doi: 10.1007/s00024-019-02219-y
|
Drouet S,Cotton F,Guéguen P. 2010. VS30,κ,regional attenuation and MW from accelerograms:Application to magnitude 3-5 French earthquakes[J]. Geophys J Int,182(2):880–898. doi: 10.1111/j.1365-246X.2010.04626.x
|
Edwards B,Fäh D,Giardini D. 2011. Attenuation of seismic shear wave energy in Switzerland[J]. Geophys J Int,185(2):967–984. doi: 10.1111/j.1365-246X.2011.04987.x
|
Edwards B,Ktenidou O J,Cotton F,Abrahamson N,van Houtte C,Fäh D. 2015. Epistemic uncertainty and limitations of the κ0 model for near-surface attenuation at hard rock sites[J]. Geophys J Int,202(3):1627–1645. doi: 10.1093/gji/ggv222
|
Hanks T C. 1982. fmax[J]. Bull Seismol Soc Am,72(6A):1867–1879. doi: 10.1785/BSSA07206A1867
|
Huang M W,Wen K L,Chang S C,Chang C L,Liu S Y,Chen K P. 2017. The high-cut parameter (Kappa) for the near-surface geology in and around the Taipei basin,Taiwan[J]. Bull Seismol Soc Am,107(3):1254–1264. doi: 10.1785/0120160070
|
Kilb D,Biasi G,Anderson J,Brune J,Peng Z,Vernon F L. 2012. A comparison of spectral parameter kappa from small and moderate earthquakes using southern California ANZA seismic network data[J]. Bull Seismol Soc Am,102(1):284–300. doi: 10.1785/0120100309
|
Kishida T,Darragh R,Ktenidou O J. 2014. Fourier spectra and kappa (κ0) estimates for rock stations in the NGA-west2 project[J]. Eng Geol,202(4):1–13.
|
Lai T S,Mittal H,Chao W A,Wu Y M. 2016. A study on kappa value in Taiwan using borehole and surface seismic array[J]. Bull Seismol Soc Am,106(4):1509–1517. doi: 10.1785/0120160004
|
Laurendeau A,Cotton F,Ktenidou O J,Bonilla L F,Hollender F. 2013. Rock and stiff-soil site amplification:Dependency on vS30 and kappa (κ0)[J]. Bull Seismol Soc Am,103(6):3131–3148. doi: 10.1785/0120130020
|
Lee V W,Trifunac M D. 2010. Should average shear-wave velocity in the top 30 m of soil be used to describe seismic amplification?[J]. Soil Dyn Earthq Eng,30(11):1250–1258. doi: 10.1016/j.soildyn.2010.05.007
|
Silva W J, Wong I G, Darragh R B. 1998. Engineering characterization of earthquake strong ground motions in the Pacific Northwest[G]//Assessing Earthquake Hazards and Reducing Risk in the Pacific Northwest. Reston: U. S. Geological Survey: 313−324.
|
Stanko D,Markušić S,Ivančić I,Mario G,Gülerce Z. 2017. Preliminary estimation of kappa parameter in Croatia[J]. IOP Conf Ser:Earth Environ Sci,95(3):032014.
|
van Houtte C,Drouet S,Cotton F. 2011. Analysis of the origins of κ (kappa) to compute hard rock to rock adjustment factors for GMPEs[J]. Bull Seismol Soc Am,101(6):2926–2941. doi: 10.1785/0120100345
|
van Houtte C,Ktenidou O J,Larkin T,Holden C. 2018. A continuous map of near-surface S-wave attenuation in New Zealand[J]. Geophys J Int,213(1):408–425. doi: 10.1093/gji/ggx559
|