Xiong Z T,Tang X G,Zhang L Q,Li D D,Yu J H. 2023. Anomaly edge enhancement and topographic correction technology of linear source 3D borehole-to-surface electrical method. Acta Seismologica Sinica45(1):46−61. DOI: 10.11939/jass.20220074
Citation: Xiong Z T,Tang X G,Zhang L Q,Li D D,Yu J H. 2023. Anomaly edge enhancement and topographic correction technology of linear source 3D borehole-to-surface electrical method. Acta Seismologica Sinica45(1):46−61. DOI: 10.11939/jass.20220074

Anomaly edge enhancement and topographic correction technology of linear source 3D borehole-to-surface electrical method

More Information
  • Received Date: May 18, 2022
  • Revised Date: August 04, 2022
  • Available Online: November 06, 2022
  • Published Date: January 16, 2023
  • Based on the finite element method of unstructured grid, the efficient forward modeling of the borehole-to-surface electrical method derived by the linear current source under the condition of the 3D complex geoelectric model was carried out. The effects on the effectiveness and accuracy of the borehole-to-surface electrical method imaging were discussed by obtaining the electric field response derivative to characterize the boundary range of the target body, and using the difference field topography correction technology to eliminate the topographic influence. And the comparison between the numerical solution and the analytical solution verifies the effectiveness of the algorithm in this paper. The model calculation results show that the spatial position and direction of the roadway with water accumulation cause significant changes in the apparent resistivity, and the extreme value of the apparent resistivity change rate accurately and clearly indicates the boundary position of the roadway. The normalized total horizontal derivative of the electric potential greatly improves the ability of the borehole-to-surface electrical method to identify the complex boundary position of the target body. Moreover, the influence of topography on the distribution of borehole-to-surface electrical field is also serious, and its apparent resistivity response is approximately symmetrical to the shape of the topography. The difference field technique can effectively weaken the influence of topography on the high-precision imaging of the borehole-to-surface electrical method. The research results have important theoretical and practical significance for improving the data interpretation level and application effect of the borehole-to-surface electrical method.
  • 戴前伟,陈德鹏,陈勇雄,侯智超. 2013. 电法勘探中异常响应特征的增强算法及其实现[J]. 煤田地质与勘探,41(3):75–78. doi: 10.3969/j.issn.1001-1986.2013.03.018
    Dai Q W,Chen D P,Chen Y X,Hou Z C. 2013. The enhanced algorithms and its implementation for the abnormal response characteristics in electrical exploration[J]. Coal Geology &Exploration,41(3):75–78 (in Chinese).
    李长伟,阮百尧,吕玉增,段长生,杨庭伟,王建历. 2010. 点源场井-地电位测量三维有限元模拟[J]. 地球物理学报,53(3):729–736.
    Li C W,Ruan B Y,Lü Y Z,Duan C S,Yang T W,Wang J L. 2010. Three-dimensional FEM modeling of point source borehole-ground electrical potential measurements[J]. Chinese Journal of Geophysics,53(3):729–736 (in Chinese).
    谭河清,沈金松,周超,董辉,房锡业,张福莱. 2004. 井-地电位成像技术及其在孤东八区剩余油分布研究中的应用[J]. 石油大学学报(自然科学版),28(2):31–37.
    Tan H Q,Shen J S,Zhou C,Dong H,Fang X Y,Zhang F L. 2004. Borehole-to-surface electrical imaging technique and its application to residual oil distribution analysis of the eighth section in Gudong Oilfield[J]. Journal of the University of Petroleum,China (Edition of Natural Science),28(2):31–37 (in Chinese).
    汤井田,张继锋,冯兵,林家勇,刘长生. 2007. 井地电阻率法歧离率确定高阻油气藏边界[J]. 地球物理学报,50(3):926–931. doi: 10.3321/j.issn:0001-5733.2007.03.035
    Tang J T,Zhang J F,Feng B,Lin J Y,Liu C S. 2007. Determination of borders for resistive oil and gas reservoirs by deviation rate using the hole-to-surface resistivity method[J]. Chinese Journal of Geophysics,50(3):926–931 (in Chinese).
    王智,潘和平. 2014. 三维井地电阻率法异常响应特征增强算法模拟研究[J]. 石油物探,53(4):491–500. doi: 10.3969/j.issn.1000-1441.2014.04.016
    Wang Z,Pan H P. 2014. Research on the enhanced algorithms of the abnormal response characteristics for 3D borehole-to-surface resistivity method[J]. Geophysical Prospecting for Petroleum,53(4):491–500 (in Chinese).
    王智,吴爱平,李刚. 2018. 起伏地表条件下的井中激电井地观测正演模拟研究[J]. 石油物探,57(6):927–935. doi: 10.3969/j.issn.1000-1441.2018.06.015
    Wang Z,Wu A P,Li G. 2018. Forward modeling of borehole-ground induced polarization method under undulating topography[J]. Geophysical Prospecting for Petroleum,57(6):927–935 (in Chinese).
    薛国强,闫述,陈卫营. 2016. 电磁测深数据地形影响的快速校正[J]. 地球物理学报,59(12):4408–4413. doi: 10.6038/cjg20161202
    Xue G Q,Yan S,Chen W Y. 2016. A fast topographic correction method for electromagnetic data[J]. Chinese Journal of Geophysics,59(12):4408–4413 (in Chinese).
    杨沁润,谭茂金,李桂山,张福莱,白泽. 2020. 大斜度井和水平井井地三维电阻率数值模拟和联合反演[J]. 地球物理学报,63(12):4540–4552. doi: 10.6038/cjg2020O0137
    Yang Q R,Tan M J,Li G S,Zhang F L,Bai Z. 2020. Numerical simulation and joint inversion of three-dimensional borehole-to-surface resistivity of high deviated or horizontal wells[J]. Chinese Journal of Geophysics,63(12):4540–4552 (in Chinese).
    张天伦,张伯林. 1995. 消除直流电阻率三极梯度法中各种干扰的实验与研究[J]. 石油地球物理勘探,30(1):100–110. doi: 10.13810/j.cnki.issn.1000-7210.1995.01.013
    Zhang T L,Zhang B L. 1995. Research on removing noises in DC resistivity trielectrode gradient measurement[J]. Oil Geophysical Prospecting,30(1):100–110 (in Chinese).
    Kong F N,Johnstad S E,Røsten T,Westerdahl H. 2008. A 2.5D finite-element-modeling difference method for marine CSEM modeling in stratified anisotropic media[J]. Geophysics,73(1):F9–F19. doi: 10.1190/1.2819691
    Ku C C,Hsieh M S,Lim S H. 1973. The topographic effect in electromagnetic fields[J]. Can J Earth Sci,10(5):645–656. doi: 10.1139/e73-065
    Li L L,Han L G,Huang D N. 2014. Normalized edge detection,and the horizontal extent and depth of geophysical anomalies[J]. Appl Geophys,11(2):149–157. doi: 10.1007/s11770-014-0436-2
    Spitzer K. 1995. A 3-D finite-difference algorithm for DC resistivity modelling using conjugate gradient methods[J]. Geophys J Int,123(3):903–914. doi: 10.1111/j.1365-246X.1995.tb06897.x
    Xiong Z T,Tang X G,Li D D,Zhang L Q. 2019. Linear source CSAMT response simulation in the 2D anisotropic formation with topography[J]. J Appl Geophys,171:103861. doi: 10.1016/j.jappgeo.2019.103861
    Xiong Z T,Tang X G,Qiu W Z,Zhao C Y,Zhang L Q. 2020. New algorithm for three-dimensional borehole-to-surface apparent resistivity imaging based on unstructured mesh finite-element method[J]. IEEE Access,8:184–194. doi: 10.1109/ACCESS.2019.2961806
    Yang Q R,Tan M J,Zhang F L,Bai Z. 2021. Wireline logs constraint borehole-to-surface resistivity inversion method and water injection monitoring analysis[J]. Pure Appl Geophys,178(3):939–957. doi: 10.1007/s00024-021-02674-6
  • Related Articles

  • Cited by

    Periodical cited type(9)

    1. 余建胜,赵斌,董培育,刘刚,刘成利,徐锐,陈正松,黄功文,房立华,熊维,王明明,林牧,聂兆生,乔学军. GNSS约束的2022年泸定M6.8地震滑动分布及同震应力变化. 地球物理学报. 2024(03): 1022-1036 .
    2. 张亦凡,伍纯昊,李渝生,易树健. 同震岩体损伤特征的定量分析——以2022年泸定M_S6.8地震为例. 工程地质学报. 2024(03): 1020-1034 .
    3. 田钧灵,李育,代雨,孙乙,薛婧,彭彬,李勋,张艳. “9.5”泸定地震对土壤呼吸及团聚体有机质的影响. 现代农业研究. 2024(07): 98-103 .
    4. 李环宇,李东平,尹晶飞,李敏,孙海青. 新疆乌什7.1级地震人口热力及其应急响应功能分析. 地震工程学报. 2024(04): 992-1000 .
    5. 邬凯,易雪斌,付晓东,张磊,康景宇,袁泉,邵江. 泸定地震震中海螺沟景区道路地质灾害发育规律及灾后重建对策. 岩石力学与工程学报. 2024(08): 1909-1922 .
    6. 牛鹏飞,韩竹军,郭鹏,李科长,吕丽星. 2022年青海门源M_S6.9地震灾害致灾机理. 地震地质. 2024(04): 761-782 .
    7. 王鹏程,罗永红,刘红枫,景俊杰. “9·5”四川泸定M_s6.8级地震诱发磨西台地地震响应分析. 山地学报. 2024(04): 576-590 .
    8. 田钧灵,薛婧,代雨,孙乙,李育,周佳慧,罗林,邓金坤,张艳. “9·5”泸定地震对土壤团聚体及其碳储量的影响. 现代园艺. 2024(23): 6-9 .
    9. 匡萱,余斌,陈龙,董秀军. 基于无人机测量的泥石流固体颗粒图像识别与泥石流预警. 山地学报. 2023(05): 733-747 .

    Other cited types(3)

Catalog

    Article views (324) PDF downloads (77) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return