Yan J R,Zhang Y S,Kan W L. 2022. Review on research of ground motion site adjustment coefficient. Acta Seismologica Sinica44(5):783−796. DOI: 10.11939/jass.20220086
Citation: Yan J R,Zhang Y S,Kan W L. 2022. Review on research of ground motion site adjustment coefficient. Acta Seismologica Sinica44(5):783−796. DOI: 10.11939/jass.20220086

Review on research of ground motion site adjustment coefficient

More Information
  • Received Date: June 05, 2022
  • Revised Date: August 09, 2022
  • Available Online: August 31, 2022
  • Published Date: September 14, 2022
  • This paper reviews and summarizes the main research results on the adjustment coefficients of ground motion field at home and abroad over the past 20 years, focusing on the effective means of considering the influence of filed conditions on ground motion parameters through strong ground motion observation and numerical theory methods. It summarizes the applicability along with the pros and cons of various methods, conducts a comparative analysis of the main results at home and abroad by combining relevant codes and provisions, and concludes that the coefficients of soft soil field in China are smaller than the international level. What’s more, the reasons for this difference are further analyzed. Finally, based on the current development trend of international seismic zoning work and the new technical requirements of the relevant codes in various industries, it puts forward prospects for the research work of the new generation of zoning maps.
  • 薄景山. 1998. 场地分类和设计反应谱调整方法研究(博士后研究报告)[R]. 哈尔滨: 中国地震局工程力学研究所: 55–58.
    Bo J S. 1998. Site Classification and Design Response Spectrum Adjustment Method Postdoctoral Research Report)[R]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 55–58 (in Chinese).
    崔昊,丁海平. 2016. 基于KiK-net强震记录的场地调整系数估计[J]. 地震工程与工程振动,36(4):147–152. doi: 10.13197/j.eeev.2016.04.147.cuih.017
    Cui H,Ding H P. 2016. Estimation of site coefficient based on KiK-net strong-motion seismograph network[J]. Earthquake Engineering and Engineering Vibration,36(4):147–152 (in Chinese).
    丁海平,王康. 2022. 基于反演基岩地震波的场地调整系数估计[J]. 地震工程与工程振动,42(1):25–33. doi: 10.13197/j.eeed.2022.0103
    Ding H P,Wang K. 2022. Estimation of site coefficient based on inversion of bedrock input[J]. Earthquake Engineering and Engineering Vibration,42(1):25–33 (in Chinese).
    窦立军. 2001. 场地条件与设计地震动[D]. 哈尔滨: 中国地震局工程力学研究所: 20–21.
    Dou L J. 2001. Site Conditions and Design Ground Motion[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 20–21 (in Chinese).
    耿淑伟. 2005. 抗震设计规范中地震作用的规定[D]. 哈尔滨: 中国地震局工程力学研究所: 67–68.
    Geng S W. 2005. Regulation of Seismic Action in Earthquake Resistant Design Code[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 67–68 (in Chinese).
    郭锋,吴东明,许国富,伋雨林. 2011. 场地条件对抗震设计反应谱最大值的影响[J]. 土木工程与管理学报,28(1):69–72. doi: 10.3969/j.issn.2095-0985.2011.01.015
    Guo F,Wu D M,Xu G F,Ji Y L. 2011. Effect of site condition on the maximum value of seismic design response spectrum[J]. Journal of Civil Engineering and Management,28(1):69–72 (in Chinese).
    郭晓云,薄景山,巴文辉. 2012. 汶川地震不同场地反应谱平台值统计分析[J]. 地震工程与工程振动,32(4):54–62. doi: 10.13197/j.eeev.2012.04.006
    Guo X Y,Bo J S,Ba W H. 2012. Statistical analysis of peak flat values of response spectra in different site conditions based on Wenchuan strong ground motions[J]. Earthquake Engineering and Engineering Vibration,32(4):54–62 (in Chinese).
    蒋通,邢海灵. 2007. 水平土层地震反应分析考虑频率相关性的等效线性化方法[J]. 岩土工程学报,29(2):218–223. doi: 10.3321/j.issn:1000-4548.2007.02.011
    Jiang T,Xing H L. 2007. An equivalent linear method considering frequency-dependent soil properties for seismic response analysis[J]. Chinese Journal of Geotechnical Engineering,29(2):218–223 (in Chinese).
    李洪达. 2015. 基于NGA-West2数据的场地系数研究[D]. 哈尔滨: 哈尔滨工业大学: 59–60.
    Li H D. 2015. Site Coefficients From NGA-West2 Data[D]. Harbin: Harbin Institute of Technology: 59–60 (in Chinese).
    李瑞山,袁晓铭. 2019. 场地放大系数的理论解答[J]. 岩土工程学报,41(6):1066–1073.
    Li R S,Yuan X M. 2019. Theoretical solution of site amplification coefficient[J]. Chinese Journal of Geotechnical Engineering,41(6):1066–1073 (in Chinese).
    李小军,彭青. 2001. 不同类别场地地震动参数的计算分析[J]. 地震工程与工程振动,21(1):29–36. doi: 10.3969/j.issn.1000-1301.2001.01.005
    Li X J,Peng Q. 2001. Calculation and analysis of earthquake ground motion parameters for different site categories[J]. Earthquake Engineering and Engineering Vibration,21(1):29–36 (in Chinese).
    李小军. 2013. 地震动参数区划图场地条件影响调整[J]. 岩土工程学报,35(增刊):21–29.
    Li X J. 2013. Adjustment of seismic ground motion parameters considering site effects in seismic zonation map[J]. Chinese Jour- nal of Geotechnical Engineering,35(S2):21–29 (in Chinese).
    卢滔. 2003. 响嘡台阵场地特征及其反应的分析[D]. 哈尔滨: 中国地震局工程力学研究所: 75–77.
    Lu T. 2003. Analysis of Site Characteristics and Reaction of the Boomed Array in Xiangtang[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 75–77 (in Chinese).
    栾极. 2012. 设计反应谱场地放大系数和动力放大系数的研究[D]. 武汉: 华中科技大学: 30–31.
    Luan J. 2012. Study on Site Amplification Coefficient and Dynamic Amplification Coefficient of Seismic Design Response Spectrum[D]. Wuhan: Huazhong University of Science and Technology: 30–31 (in Chinese).
    吕红山,赵凤新. 2007. 适用于中国场地分类的地震动反应谱放大系数[J]. 地震学报,29(1):67–76. doi: 10.3321/j.issn:0253-3782.2007.01.008
    Lü H S,Zhao F X. 2007. Site coefficients suitable to China site category[J]. Acta Seismologica Sinica,29(1):67–76 (in Chinese).
    吕悦军,彭艳菊,兰景岩,孟小红. 2008. 场地条件对地震动参数影响的关键问题[J]. 震灾防御技术,3(2):126–135. doi: 10.3969/j.issn.1673-5722.2008.02.003
    Lü Y J,Peng Y J,Lan J Y,Meng X H. 2008. Some key problems about site effects on seismic ground motion parameters[J]. Technology for Earthquake Disaster Prevention,3(2):126–135 (in Chinese).
    齐鑫,肖遥. 2012. 下辽河地区典型土层地震反应时域和频域方法对比[J]. 地震工程与工程振动,32(1):23–29. doi: 10.13197/j.eeev.2012.01.003
    Qi X,Xiao Y. 2012. Comparison of seismic responses of typical soil layers in Liaohe River plain by using time domain method and frequency domain method[J]. Earthquake Engineering and Engineering Vibration,32(1):23–29 (in Chinese).
    荣棉水,李小军,卢滔,黄雅虹,吕悦军. 2013. 对含厚软表层海域工程场地设计地震动参数确定的一点建议[J]. 地震学报,35(2):262–271. doi: 10.3969/j.issn.0253-3782.2013.02.012
    Rong M S,Li X J,Lu T,Huang Y H,Lü Y J. 2013. Suggestion on determination of design ground motion parameters for offshore engineering sites with deep soft surface layers[J]. Acta Seismologica Sinica,35(2):262–271 (in Chinese).
    史大成. 2013. 区域性场地地震动放大研究及应用[D]. 哈尔滨: 中国地震局工程力学研究所: 86–87.
    Shi D C. 2013. Study on Ground Motion Amplification of Regional Site and Application[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 86–87 (in Chinese).
    王金元. 2013. 抗震设计规范中竖向地震作用规定的研究[D]. 哈尔滨: 哈尔滨工业大学: 35–36.
    Wang J Y. 2013. Study on Vertical Earthquake Action Stipulated in Seismic Design Specification[D]. Harbin: Harbin Institute of Technology: 35–36 (in Chinese).
    闫静茹,张郁山,郝明辉. 2020. 山东省不同场地PGA放大影响研究[J]. 地震研究,43(3):569–575. doi: 10.3969/j.issn.1000-0666.2020.03.020
    Yan J R,Zhang Y S,Hao M H. 2020. Study on amplification effect of peak ground acceleration based on different sites in Shandong Province[J]. Journal of Seismological Research,43(3):569–575 (in Chinese).
    赵艳,郭明珠,李化明,王文仲. 2009. 对比分析中国有关场地条件对设计反应谱最大值的影响[J]. 地震地质,31(1):186–196. doi: 10.3969/j.issn.0253-4967.2009.01.017
    Zhao Y,Guo M Z,Li H M,Wang W Z. 2009. Contrast analysis of effect of site condition on the maximum of design response spectra[J]. Seismology and Geology,31(1):186–196 (in Chinese).
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2016. GB18306—2015 中国地震动参数区划图[S]. 北京: 中国标准出版社: 240.
    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration. 2016. Seismic Ground Motion Parameters Zonation Map of China[S]. Beijing: Standards Press of China: 240 (in Chinese).
    Aboye S A,Andrus R D,Ravichandran N,Bhuiyan A H,Martin J R,Harman N E. 2014. A new seismic site coefficient model based on conditions in the South Carolina coastal plain[J]. Bull Seismol Soc Am,104(6):2866–2883. doi: 10.1785/0120140005
    Andreotti G, Lai C G, Francesca B, Scandella L. 2013. New soil factors for the ItalianBuilding Code (NTC08) derived from 1D fully stochastic ground response analyses[C]//Proceedings XV Symp. Roma: Italian National Association of Earthquake Engineering: 1–12.
    Borcherdt R D. 1994. Estimates of site-dependent response spectra for design:Methodology and justification[J]. Earthq Spectra,10(4):617–653. doi: 10.1193/1.1585791
    Borcherdt R D. 2002. Empirical evidence for site coefficients in building code provisions[J]. Earthq Spectra,18(2):189–217. doi: 10.1193/1.1486243
    Borcherdt R D, Glassmoyer G, Dietel C, Westerlund R E. 2005. Integrated surface and borehole strong-motion, soil-response arrays in San Francisco, California: Empirical measurements of low-strain site coefficients at site class E and D soil sites[G]//Directions in Strong Motion Instrumentation. Dordrecht: Springer: 55.
    Borcherdt R D. 2014. Implications of next generation attenuation ground motion prediction equations for site coefficients used in earthquake resistant design[J]. Earthq Eng Struct Dyn,43(9):1343–1360. doi: 10.1002/eqe.2400
    Choi Y,Stewart J P. 2005. Nonlinear site amplification as function of 30 m shear wave velocity[J]. Earthq Spectra,21(1):1–30. doi: 10.1193/1.1856535
    Crouse C B,McGuire J W. 1996. Site response studies for purpose of revising NEHRP seismic provisions[J]. Earthq Spectra,12(3):407–439. doi: 10.1193/1.1585891
    Dobry R, Ramos R, Power M S. 1999. Site Factors and Site Categories in Seismic Codes: Technical Report MCEER-99-0010[R]. New York: Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute: 1−81.
    European Committee for Standardization. 2003. CEN-EN 1998-1 Eurocode 8: Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings[S]. Brussels: European Committee for Standardization: 19–30.
    Hwang H H M,Lin H J,Huo J R. 1997. Site coefficients for design of buildings in eastern United States[J]. Soil Dyn Earthq Eng,16(1):29–40. doi: 10.1016/S0267-7261(96)00031-0
    Idriss H M. 1990. Response of soft soil sites during earthquakes[C]//Proceedings Memorial Symposium to Honor Professor H B Seed. Berkeley: BiTech Publisher: 273–289.
    Idriss H M. 1991. Earthquake ground motions at soft sites[C]//Proceedings of the Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. St. Louis: University of Missouri-Rolla: 2265–2273.
    Joyner W B, Boore D M. 2000. Recent developments in earthquake ground-motion estimation[C]//Proc. of Sixth International Conference on Seismic Zonation. California: Earthquake Engineering Research Institute: 3–4.
    Moon S W,Hashash Y M A,Park D. 2017. USGS hazard map compatible depth-dependent seismic site coefficients for the Upper Mississippi Embayment[J]. KSCE J Civil Eng,21(1):220–231. doi: 10.1007/s12205-016-0681-4
    Paolucci R,Aimar M,Ciancimino A,Dotti M,Foti S,Lanzano G,Mattevi P,Pacor F,Vanini M. 2021. Checking the site categorization criteria and amplification factors of the 2021 draft of Eurocode 8 Part 1-1[J]. Bull Seismol Soc Am,19(11):4199–4234.
    Pitilakis K,Riga E,Anastasiadis A,Fotopoulou S,Karafagka S. 2019. Towards the revision of EC8:Proposal for an alternative site classification scheme and associated intensity dependent spectral amplification factors[J]. Soil Dyn Earthq Eng,126:105137. doi: 10.1016/j.soildyn.2018.03.030
    Régnier J,Bonilla L F,Bard P Y,Bertrand E,Hollender F,Kawase H,Sicilia D,Arduino P,Amorosi A,Asimaki D,Boldini D,Chen L,Chiaradonna A,Demartin F,Elgamal A,Falcone G,Foerster E,Foti S,Garini E,Gazetas G,Gélis C,Ghofrani A,Giannakou A,Gingery J,Glinsky N,Harmon J,Hashash Y,Iai S,Kramer S,Kontoe S,Kristek J,Lanzo G,Lernia A D,Lopez‐caballero F,Marot M,Mcallister G,Mercerat E D,Moczo P,Montoya‐Noguera S,Musgrove M,Nieto‐ferro A,Pagliaroli A,Passeri F,Richterova A,Sajana S,D’avila M P S,Shi J,Silvestri F,Taiebat M,Tropeano G,Vandeputte D,Verrucci L. 2018. PRENOLIN:International benchmark on 1D nonlinear site-response analysis:Validation phase exercise[J]. Bull Seismol Soc Am,108(2):876–900.
    Rodriguez-Marek A, Bray J D, Abrahamson N. 1999. Characterization of Site Response General Categories, Pacific Earthquake Engineering Research Center Report[R]. Berkeley: Pacific Gas and Electric Company: 75–84.
    Sandikkaya M A,Akkar S,Bard P Y. 2013. A nonlinear site‐amplification model for the next Pan-European ground-motion prediction equations[J]. Bull Seismol Soc Am,103(1):19–32. doi: 10.1785/0120120008
    Seyhan E,Stewart J P. 2014. Semi-empirical nonlinear site amplification from NGA-West2 data and simulations[J]. Earthq Spectra,30(3):1241–1256. doi: 10.1193/063013EQS181M
    Silva W, Darragh R, Gregor N, Martin G, Abrahamson N, Kircher C. 2000. Reassessment of Site Coefficients and Near-fault Factors for Building Code Provisions[R]. Reston, Virginia: U.S. Geological Survey (USGS).
    Society of Civil Engineerings. 2000. Earthquake Resistance Design Codes in Japan[S]. Tokyo: The Publication Committee of Earthquake Resistant Design Codes of Civil Engineering Structures in Japan: 57.
    Stewart J P,Liu A H,Choi Y. 2003. Amplification factors for spectral acceleration in tectonically active regions[J]. Bull Seismol Soc Am,93(1):332–352. doi: 10.1785/0120020049
    Sun J, Idriss I M. 1992. Users Manual for SHAKE91: A Computer Program for Conducting Equivalent Linear Seismic Response Analyses of Horizontally Layered Soil Deposits[M]. California: University of California: 1–2.
    Tropeano G,Soccodato F M,Silvestri F. 2018. Re-evaluation of code-specified stratigraphic amplification factors based on Italian experimental records and numerical seismic response analyses[J]. Soil Dyn Earthq Eng,110:262–275. doi: 10.1016/j.soildyn.2017.12.030
  • Related Articles

  • Cited by

    Periodical cited type(41)

    1. 朱瑞,任云峰,熊奇,薛寒. 综合物探探测豫北灰岩区薄覆盖层隐伏断层方法研究. 水文地质工程地质. 2024(01): 154-166 .
    2. 曾金艳,李自红,陈文,扈桂让,闫小兵. 不同勘探方法对浅层小断距隐伏断裂探测效果. 大地测量与地球动力学. 2024(03): 310-315 .
    3. 匡野,肖瑞卿,杨成程,付琪智,魏柯佳,邓金花. 浅层地震勘探与钻孔探测揭示的安宁河东支断裂特征. 四川地质学报. 2024(01): 131-135 .
    4. 邱鹏,王家海. 微动和浅震反射技术在威宁-水城断裂构造隐伏地段的探测应用. 贵州地质. 2023(02): 134-139 .
    5. 龙慧,谢兴隆,李凤哲,任政委,王春辉,郭淑君. 二维地震和高密度电阻率测深揭示雄安新区浅部三维地质结构特征. 物探与化探. 2022(04): 808-815 .
    6. 彭刘亚,疏鹏,冯伟栋. 横波反射与纵波折射联合勘探在隐伏断裂探测中的应用. 工程地球物理学报. 2022(06): 835-842 .
    7. 夏暖,鹿子林,付俊东,张建民,王冬雷,郑旭. 薄覆盖层隐伏断裂的纵横波联合探测. 物探与化探. 2021(02): 387-393 .
    8. 侯江飞,邢磊,张扬,谭锡斌,鲁人齐. 新乡—商丘断裂延津段浅部地层结构特征研究. 工程地球物理学报. 2021(04): 486-494 .
    9. Gui-Lin Du,Lian-Feng Zhao,Xiaobo Tian,Shujuan Su,Xiangchun Chang,Hualin Wang,Zhuqing Huo,Tao Zhu,Yonghua Li. Tectonic activity and earthquake risk in the Chengnanhe fault zone in Weihai city, Shandong province, China, obtained by using an integrated prospecting technique in geophysics and geology. Earthquake Science. 2021(02): 137-147 .
    10. 夏暖,吴子泉,付俊东,张建民,王冬雷,彭刘亚. 浅层地震反射和折射层析成像在海州—韩山断裂探测中的联合应用. 地震. 2021(04): 136-147 .
    11. 徐磊,汪思源,张建清,李文忠,李鹏. 近垂直反射正演模拟及其地下工程应用. 物探与化探. 2020(03): 635-642 .
    12. 马岩,李洪强,张杰,孙晟,夏雨波,冯杰,龙慧,张京卯. 雄安新区城市地下空间探测技术研究. 地球学报. 2020(04): 535-542 .
    13. 朱国军,袁洪克,侯黎华,酆少英,秦晶晶,韩健,王宏伟,刘增祺,王景红. 浅层地震资料揭示的驻马店地区上蔡岗断裂浅部构造特征. 震灾防御技术. 2020(01): 123-131 .
    14. 朱国军,袁洪克,何银娟,韩健,李吉昌,刘增祺,刘超,王景红. 浅层地震剖面揭示太行山东南缘汤西断裂构造特征. 大地测量与地球动力学. 2020(11): 1108-1111+1117 .
    15. 徐磊,张建清,陈爽爽,肖璐笛,李鹏,魏仁新. 洞内极小偏移距地震法在断层探测中的应用研究. 地球物理学进展. 2020(05): 2009-2015 .
    16. 顾勤平,许汉刚,晏云翔,赵启光,李丽梅,孟科,杨浩,王金艳,蒋新,马董伟. 郯庐断裂带新沂段地壳浅部结构和断裂活动性探测. 地震地质. 2020(04): 825-843 .
    17. 王宏伟,酆少英,秦晶晶,姬计法,魏学强,李稳. 大容量气枪震源陆地反射地震探测技术——以“地学长江计划”铜陵段试验为例. 地震学报. 2020(05): 580-591+507-508 . 本站查看
    18. 林松,王薇,李媛,周欣,廖武林. 浅地震剖面揭露南秦岭隐伏断裂特征——以丹江断裂为例. 大地测量与地球动力学. 2019(03): 221-225+230 .
    19. 李倩,谭雅丽,姬计法,焦德成,花鑫升,酆少英,刘增祺,郭新景. 利用反射地震资料研究吴忠地区崇兴断裂精细结构. 大地测量与地球动力学. 2019(03): 236-240 .
    20. 李倩,姬计法,焦德成,谭雅丽,花鑫升,酆少英,刘增祺,郭新景. 宁夏吴忠地区北部的浅部结构和隐伏断裂——地震反射剖面结果. 地震工程学报. 2019(01): 147-154 .
    21. 邓小娟,酆少英,左莹,何银娟,季通宇. 利用浅层反射地震资料中的面波与初至波研究剖面浅部结构. 大地测量与地球动力学. 2019(04): 425-431 .
    22. 花鑫升,姬计法,酆少英,杜鹏,宋威,刘增祺. 浅层地震剖面揭示固原市清水河东侧断裂特征. 大地测量与地球动力学. 2019(08): 794-797 .
    23. 马董伟. 地震勘探方法在薄覆盖层区城市活断裂探测中的应用. 物探与化探. 2019(05): 1038-1045 .
    24. 王万合,李林元. 华南地区活动断层地震探测方法——以深圳活动断层探测为例. 煤田地质与勘探. 2019(S1): 98-103 .
    25. 林松,李媛,程邈,邓小虎,王薇. 嘉鱼断裂西向延伸与第四系活动特征. 吉林大学学报(地球科学版). 2018(05): 1501-1511 .
    26. 林松,蔡永建,雷东宁,王秋良,杨钢. 浅地震反射剖面揭示地震小区划覆盖层厚度及隐伏断裂——以九江芳兰规划区为例. 大地测量与地球动力学. 2018(09): 881-885+896 .
    27. 花鑫升,石金虎,谭雅丽,何银娟. 浅层地震勘探资料揭示汤东断裂特征. 震灾防御技术. 2018(02): 276-283 .
    28. 谭雅丽,王志铄,杨卓欣,朱国军,酆少英,石金虎. 太康M_S4.7地震目标区浅层结构探测. 大地测量与地球动力学. 2017(10): 1020-1023+1037 .
    29. 罗登贵,刘江平,金聪,周黎明. 活断层的地震响应特征与瞬时地震属性. 地球科学. 2017(03): 462-470 .
    30. 陈实,李延清,张静,刘尧. 浅地表面波和纵波反射勘探方法的技术要点及进展. 西部探矿工程. 2017(04): 165-167 .
    31. 何银娟,姬计法,酆少英,李稳,王瑞,杨宇东,季通宇. 城市浅层地震勘探过障碍变观设计. 震灾防御技术. 2017(01): 115-124 .
    32. 董耀,李靖,张卓,赵民,王巍. 油气管道穿越断层地震勘探方法研究与应用. 能源与环保. 2017(07): 65-68+76 .
    33. 秦晶晶,赵成彬,刘明军,谭雅丽,左莹,刘英英. 太行山南端盘谷寺-新乡断裂的构造特征. 地震地质. 2016(01): 131-140 .
    34. 尹志清,刘福兴. 浅层断层探测技术及工程应用. 科学技术与工程. 2016(07): 103-114 .
    35. 王立会,梁久亮,彭刘亚. 初至波层析成像技术在隐伏断裂探测中的应用. CT理论与应用研究. 2015(01): 29-36 .
    36. 杨炳南,周琦,杜远生,胡祥云,谢小峰,沈小庆,朱大伟,王家俊. 音频大地电磁法对深部隐伏构造的识别与应用:以贵州省松桃县李家湾锰矿为例. 地质科技情报. 2015(06): 26-32 .
    37. 羊小云,王赢. 地震反射波法在工程地质勘察中的应用. 港工技术. 2015(01): 100-102 .
    38. 原健龙,丘斌煌,刘洪星,周武,余嘉顺. 不整合面下隐伏逆冲断层反射地震成像模拟研究. 物探化探计算技术. 2015(01): 70-77 .
    39. 李德智,牛苏杰,温孝林,徐志敏,吕扶君. AMT与地震反射波法在隧道勘察中的综合应用. 工程地球物理学报. 2014(02): 234-238 .
    40. 赵勇,王志辉,罗水余,黄力军. 综合物探技术在北京山前平原隐伏断层探测中的应用. 城市地质. 2013(02): 38-41 .
    41. 顾勤平,康清清,许汉刚,刘建达,李大虎,聂碧波. 薄覆盖层地区隐伏断层及其上断点探测的地震方法技术——以废黄河断层为例. 地球物理学报. 2013(05): 1609-1618 .

    Other cited types(20)

Catalog

    Article views (459) PDF downloads (162) Cited by(61)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return