Citation: | Wang X Y,Xu K K,Liu X Q,Zhang M S,Wang S P. 2023. Impact of stress unloading induced by the 2021 MS6.4 Yangbi,Yunnan earthquake on the surrounding areas from the joint analysis of InSAR observations and small earthquake distribution. Acta Seismologica Sinica,45(5):849−862. DOI: 10.11939/jass.20220097 |
In order to analyze the impact of stress changes on surrounding faults after the Yangbi MS6.4 earthquake in Yunnan Province on May 21, 2021, this paper used InSAR technology to perform the inversion for the coseismic deformation field of the Yangbi earthquake. Additionally, small earthquake distribution data was incorporated to establish a fault rupture sliding model. By calculating the coseismic Coulomb stress on the fault plane, the evaluation of the impact of earthquakes on surrounding faults was conducted. The analyses effectively examined the spatio-temporal resolution of earthquake rupture. The results indicate the following: ① In the high-resolution coseismic deformation field obtained from the InSAR data of the ascending orbit, the maximum line of sight deformation is approximately 5.00 cm, while for the descending orbit it is around 7.80 cm. ② The epicenter of the main shock of the Yangbi earthquake sequence, determined through precise positioning of aftershocks, is located at (99.89°E, 25.67°N) with a focal depth of 13.29 km. Apart from the main shock, the focal depths of the aftershocks are primarily concentrated in the range of 5−15 km. By analyzing the location of small earthquakes, the strike of the seismogenic fault is is determined to be NW-SE (316.69°) with a dip angle 88.56° and a slip angle 177.97°. ③ Based on the joint inversion of InSAR coseismic deformation field result and small earthquake fitting fault parameters, it was determined that the fault slip during this earthquake was primarily dextral strike-slip. The maximum slip amount observed during the ascending orbit was 0.80 m, corresponding to a depth of 8.85 km. Additionally, the average slip amount was measured to be 0.22 m, and the moment magnitude of the earthquake is MW6.41. The maximum slip of the fault during the descending orbit is 0.30 m, corresponding to a depth of 6.88 km. The average slip amount during this orbit is measured to be 0.05 m, and the moment magnitude of the earthquake is MW6.01. Furthermore, stress calculations on fault planes at the depths of approximately 7.50 km and 15 km revealed a significant decrease in stress difference between the fault itself and its surroundings after the earthquake. This suggests a notable stress unloading effect on the surrounding faults. Based on the distribution area of aftershocks, simulation of fault traces, and the direction of coseismic Coulomb stress reduction, it can be determined that the seismogenic fault of the Yangbi earthquake is a concealed secondary fault of the Weixi-Qiaohou-Weishan fault. The release of regional stress through the unloading of stress from the surrounding faults during the Yangbi earthquake has effectively reduced the seismic risk associated with these faults.
常祖峰,常昊,臧阳,代博洋. 2016. 维西—乔后断裂新活动特征及其与红河断裂的关系[J]. 地质力学学报,22(3):517–530. doi: 10.3969/j.issn.1006-6616.2016.03.009
|
Chang Z F,Chang H,Zang Y,Dai B Y. 2016. Recent active features of Weixi-Qiaohou fault and its relationship with the Honghe fault[J]. Journal of Geomechanics,22(3):517–530 (in Chinese).
|
崔华伟,郑建常,万永革,程宇豪,杨帆,孙庆山,赵瑞,许鑫,柴光斌. 2022. 2021年云南漾濞MS6.4地震序列发震构造及其与2013年洱源、2017年漾濞地震的异同[J]. 地球物理学报,65(2):620–636. doi: 10.6038/cjg2022P0425
|
Cui H W,Zheng J C,Wan Y G,Cheng Y H,Yang F,Sun Q S,Zhao R,Xu X,Chai G B. 2022. The seismogenic structure of the 2021 Yunnan Yangbi MS6.4 earthquake sequence and the difference between the Eryuan earthquake in 2013,Yangbi earthquake in 2017 and 2021[J]. Chinese Journal of Geophysics,65(2):620–636 (in Chinese).
|
邓起东. 1996. 中国活动构造研究[J]. 地质论评,42(4):295–299. doi: 10.3321/j.issn:0371-5736.1996.04.003
|
Deng Q D. 1996. Active tectonics in China[J]. Geological Review,42(4):295–299 (in Chinese).
|
高原,周蕙兰,郑斯华,马林,车时,刘卫红. 1997. 测定震源深度的意义的初步讨论[J]. 中国地震,13(4):321–329.
|
Gao Y,Zhou H L,Zheng S H,Ma L,Che S,Liu W H. 1997. Preliminary discussion on implication of determination on source depth of earthquake[J]. Earthquake Research in China,13(4):321–329 (in Chinese).
|
国家地震局震害防御司. 1995. 中国历史强震目录: 公元前23世纪—公元1911年[M]. 北京: 地震出版社: 1−514.
|
Department of Earthquake Disaster Prevention, State Seismological Bureau. 1995. Catalogue of Historical Strong Earthquakes in China: 23rd Century BC−1911 AD[M]. Beijing: Seismological Press: 1−514 (in Chinese).
|
胡鸿翔,陆涵行,王椿镛,何正勤,朱良保,颜其中,樊跃新,张国庆,邓英娥. 1986. 滇西地区地壳结构的爆破地震研究[J]. 地球物理学报,29(2):133–144. doi: 10.3321/j.issn:0001-5733.1986.02.004
|
Hu H X,Lu H X,Wang C Y,He Z Q,Zhu L B,Yan Q Z,Fan Y X,Zhang G Q,Deng Y E. 1986. Explosion investigation of the crustal structure in western Yunnan Province[J]. Acta Geophysica Sinica,29(2):133–144 (in Chinese).
|
李佳,李志伟,丁晓利,朱珺,汪长城. 2011. 强噪声SAR干涉图的等值线中值-Goldstein二级滤波[J]. 遥感学报,15(4):750–765. doi: 10.11834/jrs.20110151
|
Li J,Li Z W,Ding X L,Zhu J,Wang C C. 2011. Filtering strong noisy synthetic aperture radar (SAR) interferogram with integrated Contoured Median and Goldstein two-step filter[J]. Journal of Remote Sensing,15(4):750–765 (in Chinese).
|
宁津生,王正涛. 2006. 测绘学科发展综述[J]. 测绘科学,31(1):9–16. doi: 10.3771/j.issn.1009-2307.2006.01.001
|
Ning J S,Wang Z T. 2006. A summary of the newest progress of surveying and mapping (S&M)[J]. Science of Surveying and Mapping,31(1):9–16 (in Chinese).
|
万永革,沈正康,刁桂苓,王福昌,胡新亮,盛书中. 2008. 利用小震分布和区域应力场确定大震断层面参数方法及其在唐山地震序列中的应用[J]. 地球物理学报,51(3):793–804. doi: 10.3321/j.issn:0001-5733.2008.03.020
|
Wan Y G,Shen Z K,Diao G L,Wang F C,Hu X L,Sheng S Z. 2008. An algorithm of fault parameter determination using distribution of small earthquakes and parameters of regional stress field and its application to Tangshan earthquake sequence[J]. Chinese Journal of Geophysics,51(3):793–804 (in Chinese).
|
王长在,吴建平,房立华,王未来. 2011. 2009年姚安地震序列定位及震源区三维P波速度结构研究[J]. 地震学报,33(2):123–133.
|
Wang C Z,Wu J P,Fang L H,Wang W L. 2011. Relocation of aftershocks of the 2009 Yaoan MS6.0 earthquake and 3-D P-wave velocity structure around its source region[J]. Acta Seismologica Sinica,33(2):123–133 (in Chinese).
|
王若柏,谢觉民,薄万举. 2000. 跨断层的定点地壳形变研究及发展前景[J]. 国际地震动态,(6):5–9. doi: 10.3969/j.issn.0253-4975.2000.06.002
|
Wang R B,Xie J M,Bo W J. 2000. Studies on fixed-point crustal deformation of cross-faults and development prospects[J]. Recent Developments in World Seismology,(6):5–9 (in Chinese).
|
王莹,赵韬,胡景,刘春. 2021. 2021年云南漾濞6.4级地震序列重定位及震源机制解特征分析[J]. 地震地质,43(4):847–863. doi: 10.3969/j.issn.0253-4967.2021.04.007
|
Wang Y,Zhao T,Hu J,Liu C. 2021. Relocation and focal mechanism solutions of the 2021 Yangbi,Yunnan MS6.4 earthquake sequence[J]. Seismology and Geology,43(4):847–863 (in Chinese).
|
徐锡伟,闻学泽,郑荣章,马文涛,宋方敏,于贵华. 2003. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学:D辑,33(增刊):151–162.
|
Xu X W,Wen X Z,Zheng R Z,Ma W T,Song F M,Yu G H. 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region,China[J]. Science in China:Series D,33(S2):210–226.
|
杨军,苏有锦,陈佳,叶泵,李孝宾,金明培,王宝善. 2014. 利用CAP方法快速计算云南地区中小地震震源机制解[J]. 中国地震,30(4):551–559. doi: 10.3969/j.issn.1001-4683.2014.04.008
|
Yang J,Su Y J,Chen J,Ye B,Li X B,Jin M P,Wang B S. 2014. Fast CAP calculation of focal mechanism of moderate and small earthquake in the Yunnan area[J]. Earthquake Research in China,30(4):551–559 (in Chinese).
|
杨九元,温扬茂,许才军. 2021. 2021年5月21日云南漾濞MS6.4地震:一次破裂在隐伏断层上的浅源走滑事件[J]. 地球物理学报,64(9):3101–3110. doi: 10.6038/cjg2021P0408
|
Yang J Y,Wen Y M,Xu C J. 2021. The 21 May 2021 MS6.4 Yangbi (Yunnan) earthquake:A shallow strike-slip event rupturing in a blind fault[J]. Chinese Journal of Geophysics,64(9):3101–3110 (in Chinese).
|
易桂喜,龙锋,梁明剑,张会平,赵敏,叶有清,张致伟,祁玉萍,王思维,宫悦,乔惠珍,汪智,邱桂兰,苏金蓉. 2017. 2017年8月8日九寨沟M7.0地震及余震震源机制解与发震构造分析[J]. 地球物理学报,60(10):4083–4097. doi: 10.6038/cjg20171033
|
Yi G X,Long F,Liang M J,Zhang H P,Zhao M,Ye Y Q,Zhang Z W,Qi Y P,Wang S W,Gong Y,Qiao H Z,Wang Z,Qiu G L,Su J R. 2017. Focal mechanism solutions and seismogenic structure of the 8 August 2017 M7.0 Jiuzhaigou earthquake and its aftershocks,northern Sichuan[J]. Chinese Journal of Geophysics,60(10):4083–4097 (in Chinese).
|
张建国. 2009. 中越红河断裂活动性研究[D]. 合肥: 中国科学技术大学: 1−208.
|
Zhang J G. 2009. Study on the Activity of Zhongyue Honghe Fault[D]. Hefei: University of Science and Technology of China: 1−208 (in Chinese).
|
张克亮,甘卫军,梁诗明,肖根如,代成龙,王阅兵,李长军,张玲,马广庆. 2021. 2021年5月21日MS6.4漾濞地震GNSS同震变形场及其约束反演的破裂滑动分布[J]. 地球物理学报,64(7):2253–2266. doi: 10.6038/cjg2021O0524
|
Zhang K L,Gan W J,Liang S M,Xiao G R,Dai C L,Wang Y B,Li Z J,Zhang L,Ma G Q. 2021. Coseismic displacement and slip distribution of the 2021 May 21,MS6.4,Yangbi earthquake derived from GNSS observations[J]. Chinese Journal of Geophysics,64(7):2253–2266 (in Chinese).
|
张中杰,白志明,王椿镛,吕庆田,滕吉文,李继亮,孙善学,王新征. 2005. 冈瓦纳型和扬子型地块地壳结构:以滇西孟连—马龙宽角反射剖面为例[J]. 中国科学:D辑,34(5):387–392.
|
Zhang Z J,Bai Z M,Wang C Y,Teng J W,Lü Q T,Li J L,Sun S X,Wang X Z. 2005. Crustal structure of Gondwana- and Yangtze-typed blocks:An example by wide-angle seismic profile from Menglian to Malong in western Yunnan[J]. Science in China:Series D,48(11):1828–1836. doi: 10.1360/03yd0547
|
赵博,高原,马延路. 2022. 2021年5月21日云南漾濞MS6.4地震序列重新定位、震源机制及应力场反演[J]. 地球物理学报,65(3):1006–1020. doi: 10.6038/cjg2022P0497
|
Zhao B,Gao Y,Ma Y L. 2022. Relocations,focal mechanisms and stress inversion of the May 21th 2021 Yangbi MS6.4 earthquake sequence in Yunnan,China[J]. Chinese Journal of Geophysics,65(3):1006–1020 (in Chinese).
|
中国地震局地质研究所. 2021. 云南漾濞6.4级地震科考取得阶段性进展[EB/OL]. [2021-06-10]. https://www.eq-igl.ac.cn/zhxw/info/2021/33882.html.
|
Institute of Geology, China Earthquake Administration. 2021. Recent progress in Yangbi 6.4 magnitude earthquake scientific survey in Yunnan Province[EB/OL]. [2021-06-10]. https://www.eq-igl.ac.cn/zhxw/info/2021/33882.html (in Chinese).
|
中国地震台网中心. 2021. 2021年5月21日21时48分云南漾濞6.5级地震中国台网震相数据集[DB/OL]. [2021-08-08]. https://data.earthquake.cn/datashare/report.shtml?PAGEID=datasourcelist&dt=6fd7c34f900d49df8e0a318fb0e50d1d.
|
China Earthquake Network Center. 2021. Seismic phase dataset of M6.5 Yangbi, Yunnan earthquake at 21:48 on 21 May 2021 provided by China Earthquake Network Center[DB/OL]. [2021-08-08]. https://data.earthquake.cn/datashare/report.shtml?PAGEID=datasourcelist&dt=6fd7c34f900d49df8e0a318fb0e50d1d (in Chinese).
|
朱俊文,姚赟胜,张波. 2021. 基于Sentinel-1A数据反演漾濞MS6.4地震的同震形变场及断层几何参数[J]. 地震工程学报,43(4):784–790. doi: 10.3969/j.issn.1000-0844.2021.04.784
|
Zhu J W,Yao Y S,Zhang B. 2021. Inversion of the coseismic deformation field and fault geometric parameters of the Yangbi MS6.4 earthquake based on Sentinel-1A data[J]. China Earthquake Engineering Journal,43(4):784–790 (in Chinese).
|
GCMT. 2021. Global CMT catalog[DB/OL]. [2021-08-08]. https://www.globalcmt.org/cgi-bin/globalcmt-cgi-bin/CMT5/form?itype=ymd&yr=2021&mo=5&day=15&otype=ymd&oyr=2021&omo=5&oday=25&jyr=1976&jday=1&ojyr=1976&ojday=1&nday=1&lmw=0&umw=10&lms=0&ums=10&lmb=0&umb=10&llat=25&ulat=27&llon=99&ulon=101&lhd=0&uhd=1000<s=-9999&uts=9999&lpe1=0&upe1=90&lpe2=0&upe2=90&list=0.
|
Japan Aerospace Exploration Agency. 2021. Precise global digital 3D map: “ALOS World 3D”[EB/OL]. [2021-08-08]. https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d_e.htm.
|
King G C P,Stein R S,Lin J. 1994. Static stress changes and the triggering of earthquakes[J]. Bull Seismol Soc Am,84(3):935–953.
|
Long F,Yi G X,Wang S W,Qi Y P,Zhao M. 2019. Geometry and tectonic deformation of the seismogenic structure for the 8 August 2017 MS7.0 Jiuzhaigou earthquake sequence,northern Sichuan,China[J]. Earth Planet Phys,3(3):253–267. doi: 10.26464/epp2019027
|
Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Am,75(4):1135–1154. doi: 10.1785/BSSA0750041135
|
Orlin J B. 1993. A faster strongly polynomial minimum cost flow algorithm[J]. Oper Res,41(2):338–350. doi: 10.1287/opre.41.2.338
|
Peltzer G,Rosen P. 1995. Surface displacement of the 17 May 1993 Eureka Valley,California,earthquake observed by SAR interferometry[J]. Science,268(5215):1333–1336. doi: 10.1126/science.268.5215.1333
|
Scholz C H. 2002. The Mechanics of Earthquakes and Faulting[M]. 2nd ed. Cambridge: Cambridge University Press: 1−504.
|
Symithe S J,Calais E,Haase J S,Freed A M,Douilly R. 2013. Coseismic slip distribution of the 2010 M7.0 Haiti earthquake and resulting stress changes on regional faults[J]. Bull Seismol Soc Am,103(4):2326–2343. doi: 10.1785/0120120306
|
USGS. 2021. M6.1: 25 km NW of Dali, China[EB/OL]. [2021-08-08]. https://earthquake.usgs.gov/earthquakes/eventpage/us7000e532/executive.
|
Zhang H J,Thurber C H. 2003. Double-difference tomography:The method and its application to the Hayward fault,California[J]. Bull Seismol Soc Am,93(5):1875–1889. doi: 10.1785/0120020190
|
Yu Zining, Li Haifeng, Jing Xilong, Chi Chengquan, Zheng Haiyong. 2024: Borehole strain data based seismicity prediction analysis using a neural network. Acta Seismologica Sinica, 46(2): 327-339. DOI: 10.11939/jass.20230122 | |
2018: 《纪念汶川大地震十周年》专辑前言. Acta Seismologica Sinica, 40(3): 1-1. | |
Liu Qi, Zhang Jing, Chi Sun Liang, Yan Wei. 2014: Time-frequency characteristics of four-component borehole strain at Guzan station before and after 2013 Lushan MS7.0 earthquake. Acta Seismologica Sinica, 36(5): 770-779. DOI: 10.3969/j.issn.0253-3782.2014.05.002 | |
Qiu Zehua. 2014: On monitoring precursors of major earthquakes with dense network of borehole strainmeters. Acta Seismologica Sinica, 36(4): 738-749. DOI: 10.3969/j.issn.0253-3782.2014.04.019 | |
Chi Shunliang, Liu Qi, Chi Yi, Deng Tao, Liao Chengwang, Yang Guang, Zhang Guiping, Chen Jie. 2013: Borehole strain anomalies before the 20 April 2013 Lushan MS7.0 earthquake. Acta Seismologica Sinica, 35(3): 296-303. DOI: 10.3969/j.issn.0253-3782.2013.03.002 | |
Zhu Yiqingup, Liang Weifeng Xu Yunma Guo Shusong Liu Fangloalucash. 2010: Dynamic variation of gravity field before andafter Wenchuan MS8.0 earthquake. Acta Seismologica Sinica, 32(6): 633-640. | |
2004: 华东地区地电阻率各向异性度的地震前兆异常特征初步研究. Acta Seismologica Sinica, 26(2): 223-227. | |
LIN CHANGYOU, Liu XIAOLING, Wu YUXIAcom sh advance. 1990: THE FURTHER APPLICATION OF MAGNETOTELLURIC SOUNDING IN THE PROBE OF EARTHQUAKE PRECURSORS. Acta Seismologica Sinica, 12(2): 166-175. |
1. |
朱瑞,任云峰,熊奇,薛寒. 综合物探探测豫北灰岩区薄覆盖层隐伏断层方法研究. 水文地质工程地质. 2024(01): 154-166 .
![]() | |
2. |
曾金艳,李自红,陈文,扈桂让,闫小兵. 不同勘探方法对浅层小断距隐伏断裂探测效果. 大地测量与地球动力学. 2024(03): 310-315 .
![]() | |
3. |
匡野,肖瑞卿,杨成程,付琪智,魏柯佳,邓金花. 浅层地震勘探与钻孔探测揭示的安宁河东支断裂特征. 四川地质学报. 2024(01): 131-135 .
![]() | |
4. |
邱鹏,王家海. 微动和浅震反射技术在威宁-水城断裂构造隐伏地段的探测应用. 贵州地质. 2023(02): 134-139 .
![]() | |
5. |
龙慧,谢兴隆,李凤哲,任政委,王春辉,郭淑君. 二维地震和高密度电阻率测深揭示雄安新区浅部三维地质结构特征. 物探与化探. 2022(04): 808-815 .
![]() | |
6. |
彭刘亚,疏鹏,冯伟栋. 横波反射与纵波折射联合勘探在隐伏断裂探测中的应用. 工程地球物理学报. 2022(06): 835-842 .
![]() | |
7. |
夏暖,鹿子林,付俊东,张建民,王冬雷,郑旭. 薄覆盖层隐伏断裂的纵横波联合探测. 物探与化探. 2021(02): 387-393 .
![]() | |
8. |
侯江飞,邢磊,张扬,谭锡斌,鲁人齐. 新乡—商丘断裂延津段浅部地层结构特征研究. 工程地球物理学报. 2021(04): 486-494 .
![]() | |
9. |
Gui-Lin Du,Lian-Feng Zhao,Xiaobo Tian,Shujuan Su,Xiangchun Chang,Hualin Wang,Zhuqing Huo,Tao Zhu,Yonghua Li. Tectonic activity and earthquake risk in the Chengnanhe fault zone in Weihai city, Shandong province, China, obtained by using an integrated prospecting technique in geophysics and geology. Earthquake Science. 2021(02): 137-147 .
![]() |
|
10. |
夏暖,吴子泉,付俊东,张建民,王冬雷,彭刘亚. 浅层地震反射和折射层析成像在海州—韩山断裂探测中的联合应用. 地震. 2021(04): 136-147 .
![]() | |
11. |
徐磊,汪思源,张建清,李文忠,李鹏. 近垂直反射正演模拟及其地下工程应用. 物探与化探. 2020(03): 635-642 .
![]() | |
12. |
马岩,李洪强,张杰,孙晟,夏雨波,冯杰,龙慧,张京卯. 雄安新区城市地下空间探测技术研究. 地球学报. 2020(04): 535-542 .
![]() | |
13. |
朱国军,袁洪克,侯黎华,酆少英,秦晶晶,韩健,王宏伟,刘增祺,王景红. 浅层地震资料揭示的驻马店地区上蔡岗断裂浅部构造特征. 震灾防御技术. 2020(01): 123-131 .
![]() | |
14. |
朱国军,袁洪克,何银娟,韩健,李吉昌,刘增祺,刘超,王景红. 浅层地震剖面揭示太行山东南缘汤西断裂构造特征. 大地测量与地球动力学. 2020(11): 1108-1111+1117 .
![]() | |
15. |
徐磊,张建清,陈爽爽,肖璐笛,李鹏,魏仁新. 洞内极小偏移距地震法在断层探测中的应用研究. 地球物理学进展. 2020(05): 2009-2015 .
![]() | |
16. |
顾勤平,许汉刚,晏云翔,赵启光,李丽梅,孟科,杨浩,王金艳,蒋新,马董伟. 郯庐断裂带新沂段地壳浅部结构和断裂活动性探测. 地震地质. 2020(04): 825-843 .
![]() | |
17. |
王宏伟,酆少英,秦晶晶,姬计法,魏学强,李稳. 大容量气枪震源陆地反射地震探测技术——以“地学长江计划”铜陵段试验为例. 地震学报. 2020(05): 580-591+507-508 .
![]() | |
18. |
林松,王薇,李媛,周欣,廖武林. 浅地震剖面揭露南秦岭隐伏断裂特征——以丹江断裂为例. 大地测量与地球动力学. 2019(03): 221-225+230 .
![]() | |
19. |
李倩,谭雅丽,姬计法,焦德成,花鑫升,酆少英,刘增祺,郭新景. 利用反射地震资料研究吴忠地区崇兴断裂精细结构. 大地测量与地球动力学. 2019(03): 236-240 .
![]() | |
20. |
李倩,姬计法,焦德成,谭雅丽,花鑫升,酆少英,刘增祺,郭新景. 宁夏吴忠地区北部的浅部结构和隐伏断裂——地震反射剖面结果. 地震工程学报. 2019(01): 147-154 .
![]() | |
21. |
邓小娟,酆少英,左莹,何银娟,季通宇. 利用浅层反射地震资料中的面波与初至波研究剖面浅部结构. 大地测量与地球动力学. 2019(04): 425-431 .
![]() | |
22. |
花鑫升,姬计法,酆少英,杜鹏,宋威,刘增祺. 浅层地震剖面揭示固原市清水河东侧断裂特征. 大地测量与地球动力学. 2019(08): 794-797 .
![]() | |
23. |
马董伟. 地震勘探方法在薄覆盖层区城市活断裂探测中的应用. 物探与化探. 2019(05): 1038-1045 .
![]() | |
24. |
王万合,李林元. 华南地区活动断层地震探测方法——以深圳活动断层探测为例. 煤田地质与勘探. 2019(S1): 98-103 .
![]() | |
25. |
林松,李媛,程邈,邓小虎,王薇. 嘉鱼断裂西向延伸与第四系活动特征. 吉林大学学报(地球科学版). 2018(05): 1501-1511 .
![]() | |
26. |
林松,蔡永建,雷东宁,王秋良,杨钢. 浅地震反射剖面揭示地震小区划覆盖层厚度及隐伏断裂——以九江芳兰规划区为例. 大地测量与地球动力学. 2018(09): 881-885+896 .
![]() | |
27. |
花鑫升,石金虎,谭雅丽,何银娟. 浅层地震勘探资料揭示汤东断裂特征. 震灾防御技术. 2018(02): 276-283 .
![]() | |
28. |
谭雅丽,王志铄,杨卓欣,朱国军,酆少英,石金虎. 太康M_S4.7地震目标区浅层结构探测. 大地测量与地球动力学. 2017(10): 1020-1023+1037 .
![]() | |
29. |
罗登贵,刘江平,金聪,周黎明. 活断层的地震响应特征与瞬时地震属性. 地球科学. 2017(03): 462-470 .
![]() | |
30. |
陈实,李延清,张静,刘尧. 浅地表面波和纵波反射勘探方法的技术要点及进展. 西部探矿工程. 2017(04): 165-167 .
![]() | |
31. |
何银娟,姬计法,酆少英,李稳,王瑞,杨宇东,季通宇. 城市浅层地震勘探过障碍变观设计. 震灾防御技术. 2017(01): 115-124 .
![]() | |
32. |
董耀,李靖,张卓,赵民,王巍. 油气管道穿越断层地震勘探方法研究与应用. 能源与环保. 2017(07): 65-68+76 .
![]() | |
33. |
秦晶晶,赵成彬,刘明军,谭雅丽,左莹,刘英英. 太行山南端盘谷寺-新乡断裂的构造特征. 地震地质. 2016(01): 131-140 .
![]() | |
34. |
尹志清,刘福兴. 浅层断层探测技术及工程应用. 科学技术与工程. 2016(07): 103-114 .
![]() | |
35. |
王立会,梁久亮,彭刘亚. 初至波层析成像技术在隐伏断裂探测中的应用. CT理论与应用研究. 2015(01): 29-36 .
![]() | |
36. |
杨炳南,周琦,杜远生,胡祥云,谢小峰,沈小庆,朱大伟,王家俊. 音频大地电磁法对深部隐伏构造的识别与应用:以贵州省松桃县李家湾锰矿为例. 地质科技情报. 2015(06): 26-32 .
![]() | |
37. |
羊小云,王赢. 地震反射波法在工程地质勘察中的应用. 港工技术. 2015(01): 100-102 .
![]() | |
38. |
原健龙,丘斌煌,刘洪星,周武,余嘉顺. 不整合面下隐伏逆冲断层反射地震成像模拟研究. 物探化探计算技术. 2015(01): 70-77 .
![]() | |
39. |
李德智,牛苏杰,温孝林,徐志敏,吕扶君. AMT与地震反射波法在隧道勘察中的综合应用. 工程地球物理学报. 2014(02): 234-238 .
![]() | |
40. |
赵勇,王志辉,罗水余,黄力军. 综合物探技术在北京山前平原隐伏断层探测中的应用. 城市地质. 2013(02): 38-41 .
![]() | |
41. |
顾勤平,康清清,许汉刚,刘建达,李大虎,聂碧波. 薄覆盖层地区隐伏断层及其上断点探测的地震方法技术——以废黄河断层为例. 地球物理学报. 2013(05): 1609-1618 .
![]() |