Turn off MathJax
Article Contents
Zhu Y J,Luo Y,Zhao L. 2023. Rupture process of the January 2022 Menyuan,Qinghai MS6.9 earthquake revealed by inversion of regional broadband seismograms. Acta Seismologica Sinica,45(3):1−15 doi: 10.11939/jass.20220148
Citation: Zhu Y J,Luo Y,Zhao L. 2023. Rupture process of the January 2022 Menyuan,Qinghai MS6.9 earthquake revealed by inversion of regional broadband seismograms. Acta Seismologica Sinica45(3):1−15 doi: 10.11939/jass.20220148

Rupture process of the January 2022 Menyuan,Qinghai MS6.9 earthquake revealed by inversion of regional broadband seismograms

doi: 10.11939/jass.20220148
  • Received Date: 2022-08-16
  • Rev Recd Date: 2022-09-28
  • Available Online: 2022-09-30
  • Based on regional broadband waveform records, we investigate the rupture process of the January 2022 Menyuan MS6.9 earthquake by using the finite fault inversion method, and then combined with the geological knowledge and aftershock relocation results to determine the actual rupture fault., The inversion results show that the Menyuan earthquake occurred on a WNW-trending strike-slip fault. The rupture mainly occurred on both sides of the hypocenter, with a bilateral rupture characteristic. The maximum ruptures on the two sides of the hypocenter occurred at 2 s and 9 s. In terms of rupture scale, the depth of obvious rupture and the length of surface rupture are about 16 km and 20 km, and the maximum slip of 1.5 m occurs at about 6km. The seismic energy is mainly released in the first 15 s. The total seismic moment released is 1.23×1019 N·m, equivalent to MW6.67. The dip angle of the seismogenic fault plane is 84.6°, almost vertical. Due to the large range of rupture, the surface projection of obvious rupture is up to 34 km.


  • loading
  • [1]
    Chen W B. 2003. Principal features of tectonic deformation and their generation mechanism in the Hexi Corridorand its adjacent regions since late Quaternary[D]. Beijing: Institute of Geology, China Earthquake Administration: 59–69(in Chinese).
    Fan L P,Li B R,Liao S R,Jiang C,Fang L H. 2022. Precise relocation of the aftershock sequences of the 2022 M6.9 Menyuan earthquake[J]. Earthquake Science,35(2):138–145 (in Chinese). doi: 10.1016/j.eqs.2022.01.021
    Institute of Geology, State Seismological Bureau, Seismological Bureau of Ningxia Hui Autonomous Region. 1990. Haiyuan Active Fault System [M]. Beijing: Seismological Press: 99–138 (in Chinese).
    He W G,Liu B C,Yuan D Y,Yang M. 2000. Research on slip rates of the Lenglongling active fault zone[J]. Northwestern Seismological Journal,22(1):90–97 (in Chinese).
    He W G,Yuan D Y,Ge W P,Luo H. 2000. Determination of the slip rate of the Lenglongjing fault in the middle and eastern segments of the Qilian mountain active fault zone.[J]. Earthquake,30(1):131–137 (in Chinese).
    Han S,Wu Z H,Gao Y,Lu H F. 2022. Surface rupture investigation of the 2022 Menyuan MS6.9 earthquake,Qinghai,China:Implications for the fault behavior of the Engorging fault and regional intense earthquake risk[J]. Journal of Geomechanics,28(2):155–168 (in Chinese).
    Han Z J, Niu P F, Li K Z, Lv L X. 2022. Primary understanding of the MS6.9 Menyuan earthquake on January 8, 2022 in Qinghai Province [EB/OL]. [2022-01-08]. https://www.eq-igl.ac.cn/zhxw/info/2022/36632.html (in Chinese).
    Li Z M,Gai H L,Li X,Yuan D Y,Xie H,Jiang W L,Li Y S,Su Q. 2022. Seismogenic fault and coseismic surface deformation of the Menyuan Ms6.9 earthquake in Qinghai,China[J]. Acta Geologica Sinica,96(1):331–335 (in Chinese).
    Li Z H,Han B Q,Liu Z J,Zhang M M,Yu C,Chen B,Liu H H,Du J,Zhang S C,Zhu W,Zhang Q,Peng J B. 2022. Source Parameters and Slip Distributions of the 2016 and 2022 Menyuan,Qinghai Earthquakes Constrained by InSAR Observations[J]. Geomatics and Information Science of Wuhan University,47(6):887–897 (in Chinese).
    Li X,Wan Y G,Cui H W,Gao X W,Huang J C,Zhang S S. 2016. Tectonic stress field of 2016,MS6.4 Menyuan,Qinghai earthquake[J]. North China Earthquake Sciences,34(2):36–41 (in Chinese).
    Liu C L, Zheng Y, Ge C, Xiong X, Xu H Z. 2013. Rupture Process of the M7.0 Lushan earthquake[J], 2013. Science China: Earth Sciences, doi: 10.1007/s11430-013-4639-9 (in Chinese).
    Liu Z M,Zhang G W,Liang S S,Zou L Y. 2022. Spatial migration characteristics of the aftershock sequence of the Menyuan,Qinghai MS6.9 earthquake in 2022[J]. China Earthquake Engineering Journal,44(1):475–487 (in Chinese).
    Liu C L,Zheng Y,Xiong X,Fu R,Shan B,Diao F Q. 2014. Rupture process of Ms6.5 Ludian earthquake constrained by regional broadband seismograms[J]. Chinese Journal of Geophysics,57(9):3028–3037 (in Chinese).
    Pan J W,Li H B,CHEVALIER M L,Liu D L. 2022. Coseismic surface rupture and seismogenic structure of the 2022 MS6.9 Menyuan earthquake,Qinghai Province,China[J]. Acta Geologica Sinica,96(1):215–231 (in Chinese).
    Shi F Q,Shao Z G,Zhan W,Ding X G,Zhu L,Li Y J. 2018. Numerical modeling of the shear modulus and stress state of active faults in the northeastern margin of the Tibetan plateau[J]. Chinese Journal of Geophysics,61(9):3651–3663 (in Chinese).
    Wang Q,Gao Y. 2014. Rayleigh wave phase velocity tomography and strong earthquake activity on the southeastern front of the Tibetan Plateau[J]. Science China Earth Sciences,57:2532–2542 (in Chinese). doi: 10.1007/s11430-014-4908-2
    WANG Wei-min, HE Jian-kun, HAO Jin-lai. 2022. Rupture process of the 2022 M6.9 Menyuan earthquake Qinghai China. Academic discussion materials. (in Chinese).
    Xu X W,Wu X Y,Yu G H,Tan X B,Li K. 2017. Seismo-Geological signatures for identifying M≥7.0 earthquake risk areas and their premilimary application in Mainland China[J]. Seismology and Geology,39(2):219–275 (in Chinese).
    Xu Y C,Guo X Y,Feng L L. 2022. Relocation and focal mechanism solutions of the MS6.9 Menyuan earthquake sequence on January 8,2022 in Qinghai Province[J]. Acta Seismologica Sinica,44(2):1–15 (in Chinese).
    Yuan D Y,Zhang P Z,Liu B C,Gan W J,Mao F Y,Wang Z C,Zheng W J,Guo H. 2004. Geometrical imagery and tectonic transformation of late Quaternary active tectonics in northeastern margin of Qinghai-Xizang plateau[J]. Acta Geologica Sinica,78(2):270–278 (in Chinese).
    Zhang Y,Xu L S,Chen Y T,Wang R J. 2014. Fast inversion for the rupture process of the 12 February 2014 Yutian MW6.9 earthquake:Discussion on the impacts of focal mechanism on rupture process inversions[J]. Acta Seismologica Sinica,36(2):159–164 (in Chinese).
    Zhang Y,Chen Y T,Xu L S,Wei X,Jin M P,Zhang S. 2015. The 2014 MW6.1 Ludian,Yunnan,earthquake:A complex conjugated ruptured earthquake[J]. Chinese Journal of Geophysics,58(1):153–162 (in Chinese).
    Zuo K Z,Chen J F. 2018. 3D body―wave velocity structure of crust and relocation of earthquakes in the Menyuan area[J]. Chinese Journal of Geophysics,61(7):2788–2801 (in Chinese).
    Zou L, Ji L Y, Li C J, L J. Study on Current Deformation Process and Seismicity of Lenglongling Area based on Small Earthquakes and GPS Data[J]. Journal of Seismological Research, 45(3): 416–423(in Chinese).
    Zhu Y J,Luo Y,Zhao L,Tian J H. 2022. Rupture process of Yunnan Yangbi MS6.4 earthquake constrained by regional broadband seismograms[J]. Chinese Journal of Geophysics,65(3):1021–1031 (in Chinese).
    Zhong S J,Wu J P,Fang L H,Wang W L,Fan L P,Wang H F. 2017. Surface wave Eikonal tomography in and around the northeastern margin of the Tibetan plateau[J]. Chinese Journal of Geophysics,60(6):2304–2314 (in Chinese).
    Zhang Y,Xu L S,Chen Y T. 2015. Rupture process of the 2015 Nepal Mw7.9 earthquake:Fast inversion and preliminary joint inversion[J]. Chinese Journal of Geophysics,58(5):1804–1811 (in Chinese).
    Institute of Geophysics, China Earthquake Administration. 2022. A brief of the MS6.9 Menyuan earthquake on January 8, 2022 in Qinghai Province [EB/OL]. [2022-01-10]. https://www.cea-igp.ac.cn/kydt/278809.html (in Chinese).
    Institute of Geology, China Earthquake Administration. 2022. A brief of the MS6.9 Menyuan earthquake on January 8, 2022 in Qinghai Province [EB/OL]. [2022-01-14]. https://www.eq-igl.ac.cn/kydt/info/2022/36614.html (in Chinese).
    China Earthquake Networks Center. 2022. Seismic catalogue [EB/OL]. [2022-01-08]. https://news.ceic.ac.cn/index.html?time=1664447143 (in Chinese).
    Aki K, Richards P G. (1980). Quantitative Seismology: Theory and Methods[M]. H. Freeman, San Francisco, California.
    Burchfiel B C,Hodges K V,Royden L H. 1987. Geology of Panamit Valley-Saline Valley pull-apart system,California:Palinspastic evidence for low-angle geometry of a Neogene range-bounding fault[J]. J Geophys Res,82:10422–10426.
    England P,Molnar P. 1997. Active deformation of Asia:From kinematics to dynamics[J]. Science,278(5338):647–650. doi: 10.1126/science.278.5338.647
    Guo P,Han Z J,Dong S,Yuan R,Xie Z. 2019a. Surface rupture and slip distribution along the Lenglongling fault in the NE Tibetan Plateau:Implications for faulting behavior[J]. J Asian Earth Sci,172:190–207. doi: 10.1016/j.jseaes.2018.09.008
    Guo P,Han Z J,Mao Z,Xie Z,Dong S,Gao F,Gai H L. 2019b. Paleo earthquakes and Rupture Behavior of the Lenglongling Fault:Implications for Seismic Hazards of the Northeastern Margin of the Tibetan Plateau[J]. J Geophy Res:Solid Earth,124(2):1520–1543. doi: 10.1029/2018JB016586
    Guo P,Han Z J,Gao F,Zhu C H,Gai H L. 2020. A new tectonic model for the 1927 M8.0 Gulang earthquake on the NE Tibetan plateau[J]. Tectonics,39(9):e2020TC006064.
    Gaudemer Y,Tapponnier P,Meyer B ,Peltzer G,Guo S,Chen Z. 1995. Partitioning of crustal slip between linked,active faults in the eastern Qilian Shan,and evidence for a major seismic gap,the ‘Tianzhu gap’,on the western Haiyuan Fault,Gansu(China)[J]. Geophys J Int,120(3):599–645.
    Hsieh M C,Zhao Li,Ji C,Ma K F. 2016. Efficient inversions for earthquake slip distributions in 3D structures[J]. Seismol Res Lett,87(6):1342–1354. doi: 10.1785/0220160050
    Han S C, Zhang H J, Xin H L, Shen W S, Yao H J. 2021. USTClitho2.0: Updated Unified Seismic Tomography Models for Continental China Lithosphere from Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion Data[J]. Seismol Res Lett, .
    Ji C, Wald D J, Helmberger D V. . 2002. Source description of the1999 Hector Mine, California, earthquake, part I: Wavelet domain inversion theory and resolution analysis[J], Bull Seismol Soc Am, 92: 1192–1207.
    Ji C, Helmberger D V, Wald D J, Ma K F. 2003. Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake[J]. J Geophys. Res. 108(B9): 2412.
    Lasserre C,Gaudemer Y,Tapponnier P,Meriaux A,Yuan D,Ryerson f j,Finkel R C,Caffee M W. 2002. Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault,Qinghai,China[J]. J Geophy Res:Solid Earth,107(B11):2276.
    Molnar P,Tapponnier P. 1975. Cenozoic tectonics of Asia:Effects of a continental collision[J]. Science,189(4201):419–426. doi: 10.1126/science.189.4201.419
    Tapponnier P,Xu Z Q,Roger F,Meyer B,Arnaud N,Wittlinger G. 2001. Oblique stepwise rise and growth of the Tibet plateau[J]. Science,294(5547):1671–1677. doi: 10.1126/science.105978
    Replumaz A,Tapponnier P. 2003. Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks[J]. J Geophy Res 108(B6),:2285.
    Royden L,Burchfiel B C,King R W. 1997. Surface deforlations of a population of very small rift-related normal faults[J]. Geology 24,:683–686.
    Shao G,Li X Y,Ji C. 2011. Focal mechanism and slip history of the 2011 Mw9.1 of the Pacific coast of Tohoku Earthquake,constrained with teleseismic body and waves[J]. Earth Planets Space,63(7):559–564. doi: 10.5047/eps.2011.06.028
    Tapponnier P, Molnar P. 1977. Active faulting and tectonics in China. J Geophy Res[J], v. 82, p. 2905–2930.
    Tapponnier P,Meyer B,Avouac J P,Peltzer G,Gaudemer Y,Guo S M,Xiang H F,Yin K L,Chen Z T,Cai S H,Dai H G. 1990. Active thrusting and folding in the Qilian Shan,and decoupling between upper crust and mantle in Northeastern Tibet[J]. Earth Planet Sci Lett,v.97:382–403.
    Wei S,Helmberger D,Avouac J P. 2013. Modeling the 2012 Wharton basin earthquakes off-Sumatra:Complete lithospheric failure[J]. J Geophy Res:Solid Earth,118(7):3592–3609. doi: 10.1002/jgrb.50267
    Wang M,Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. J Geophy Res:Solid Earth,125(2):e2019JB018774.
    Xu X W,Robert S. Yeats,Yu G H 2010. Five short historical earthquake surface ruptures near the Silk Road,Gansu Province,China[J]. Bull Seismol Soc Am,100(2):541–561. doi: 10.1785/0120080282
    Zhu LP,Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophys. J Int.,148(3):619–627. doi: 10.1046/j.1365-246X.2002.01610.x
    Zhang P Z,Molnar P,Xu X W. 2007. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault,northern margin of the Tibetan plateau[J]. Tectonics,26(5):TC5010.
    Zhang W Q,Jiao D C,Zhang P Z. 1987. Displacement along the Haiyuan Fault associated with the great 1920 Haiyuan,China,earthquake[J]. Bull Seismol Soc Am,77(1):117–131.
    Zheng W J,Zhang P Z,He W G,Yuan D Y,Shao Y X,Zheng D W. 2013. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan plateau:Evidence from decadal GPS measurements and late Quaternary slip rates on faults[J]. Tectonophysics,584:267–280. doi: 10.1016/j.tecto.2012.01.006
    Zheng X J, Zhang Y, Wang R J, Zhao L, Li W Y, Huang Q H. 2020. Automatic Inversions of Strong-Motion for Finite-Fault Models of Significant Earthquakes in and around Japan[J]. J Geophy Res: Solid Earth. Doi: 10.1029/2020jb019992.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (329) PDF downloads(92) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint