Liu F,Sun D J,Zhou Y J,Zhu A L,Wei W,Piao J. 2023. Seismicity characteristics of fault zones in Fujian area based on automatic seismic detection method. Acta Seismologica Sinica45(3):538−549. DOI: 10.11939/jass.20220188
Citation: Liu F,Sun D J,Zhou Y J,Zhu A L,Wei W,Piao J. 2023. Seismicity characteristics of fault zones in Fujian area based on automatic seismic detection method. Acta Seismologica Sinica45(3):538−549. DOI: 10.11939/jass.20220188

Seismicity characteristics of fault zones in Fujian area based on automatic seismic detection method

More Information
  • Received Date: October 06, 2022
  • Revised Date: December 24, 2022
  • Available Online: May 29, 2023
  • Published Date: May 14, 2023
  • Driven by the tectonic loading of Taiwan and Taiwan Strait, there are several large Quaternary fracture zones in the Fujian area, with strong historical and current seismicity. We build a comprehensive seismic catalog with a new automatic workflow called PALM (phase picking, association, location, matched filter), which combines STA/LTA and matched filter. PALM is applied to 10 month’s continuous data in 2015 of 88 stations from the Fujian Earthquake Agency. We recognized 919 template events and finally relocated 2 243 events after matching filter, among which 1 991 events with magnitude greater than ML1.0, and it greatly expanded the catalog from Fujian Earthquake Agency in the range of ML1.0−1.5. The depth of relocated earthquake events are distributed between 0 and 20 km, with most of them occurred within 10 km. The events are concentrated along Changle-Zhao’an fault zone and Yong’an-Jinjiang fault zone and showed obvious segmental activity. We detected more earthquakes than the catalog from Fujian Earthquake Agency, and the seismicity was stronger in the southwest section and weaker in the northeast section. The depth distribution along the fault zone became shallower from south to north, which was consistent with the change of Moho depth. Besides, we can see a highly clustered feature of seismicity at northwest section and slightly dispersed at southeast segment in Yong’an-Jinjiang fault zone, which forms a conjugate shape with Changle-Zhao’an fault zone. The repicked and relocated events in Fujian area was consistent with the characteristics of horizontal crustal deformation, which was stronger in south and east while weaker in north and west.
  • 陈光,李祖宁,王紫燕,钟继茂,陈超贤. 2010. 福建地壳运动与地震关系初探[J]. 华北地震科学,28(1):21–25. doi: 10.3969/j.issn.1003-1375.2010.01.004
    Chen G,Li Z N,Wang Z Y,Zhong J M,Chen C X. 2010. Study on the relationship between crustal movement and seismicity in Fujian area[J]. North China Earthquake Sciences,28(1):21–25 (in Chinese).
    国家地震局震害防御司. 1995. 中国历史强震目录(公元前23世纪—公元1911年)[M]. 北京: 地震出版社: 141–144, 453–455.
    Department of Earthquake Disaster Prevention, State Seismology Bureau. 1995. The Catalogue of Chinese Historical Strong EarthquakesThe 23rd Century BC−1911 AD)[M]. Beijing: Seismological Press: 141–144, 453–455 (in Chinese).
    郭晓然,谢志招,闫培,李普春,王笋. 2019. 福建—台湾海峡深部地壳结构探测与滨海断裂带性质研究[J]. 华南地震,39(2):34–42. doi: 10.13512/j.hndz.2019.02.006
    Guo X R,Xie Z Z,Yan P,Li P C,Wang S. 2019. The exploration on the deep crustal structure in the Fujian-Western Taiwan Strait and study on the littoral fault zone[J]. South China Journal of Seismology,39(2):34–42 (in Chinese).
    金震. 2018. 福建及台湾海峡中南部三维地壳结构研究[D]. 哈尔滨: 中国地震局工程力学研究所: 83–84, 87–89.
    Jin Z. 2018. Study on Three-Dimensional Crustal Structure in the Central and Southern Fujian Strait and Taiwan Strait[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 83–84, 87–89 (in Chinese).
    金震,李山有,蔡辉腾,李培,李海艳,徐嘉隽. 2018. 利用气枪地震资料对福建及台湾海峡南部地壳三维P波速度结构研究[J]. 地球物理学报,61(7):2776–2787. doi: 10.6038/cjg2018L0379
    Jin Z,Li S Y,Cai H T,Li P,Li H Y,Xu J J. 2018. 3D P-wave velocity structure of crust in Fujian and the Southern Taiwan Strait derived from air-gun seismic data[J]. Chinese Journal of Geophysics,61(7):2776–2787 (in Chinese).
    李细兵,宋晓东,郑斯华,陈惠芳. 2019a. 利用人工爆破资料研究福建一维P波速度结构和地震定位[J]. 地球物理学报,62(5):1716–1733.
    Li X B,Song X D,Zheng S H,Chen H F. 2019a. A 1D P-wave velocity model of Fujian Province,China and earthquake locations from controlled explosion[J]. Chinese Journal of Geophysics,62(5):1716–1733 (in Chinese).
    李细兵,熊振,范小平,陶小三,彭小波. 2019b. 福建地区地壳上地幔顶部三维速度结构及构造意义[J]. 地震地质,41(5):1206–1222.
    Li X B,Xiong Z,Fan X P,Tao X S,Peng X B. 2019b. The 3-D velocity structure of crust and uppermost mantle and its tectonic implications in Fujian Province[J]. Seismology and Geology,41(5):1206–1222 (in Chinese).
    李祖宁,郑勇,熊熊,林树,陈祥熊,鲍挺,陈光. 2014. 福建—台湾地区地壳构造及其显示的动力学构造研究[J]. 地震研究,37(1):29–38.
    Li Z N,Zheng Y,Xiong X,Lin S,Chen X X,Bao T,Chen G. 2014. Research on crustal three dimensional velocity structure in Fujian-Taiwan region and its tectonic implications[J]. Journal of Seismological Research,37(1):29–38 (in Chinese).
    林松建,黄宗林. 2013. 福建永安—晋江断裂带东南段地震动力环境分析[J]. 地震研究,36(3):299–305. doi: 10.3969/j.issn.1000-0666.2013.03.007
    Lin S J,Huang Z L. 2013. Analysis for the earthquake dynamic environment of southeast segment of Yong’an-Jinjiang faults in Fujian[J]. Journal of Seismological Research,36(3):299–305 (in Chinese).
    徐锡伟, 韩竹军, 杨晓平, 张世民, 于贵华, 周本刚, 李峰, 马保起, 陈桂华, 冉勇康. 2016. 中国及邻近地区地震构造图[M]. 北京: 地震出版社: 1.
    Xu X W, Han Z J, Yang X P, Zhang S M, Yu G H, Zhou B G, Li F, Ma B Q, Chen G H, Ran Y K. 2016. Seismotectonic Map of China and Its Adjacent Areas[M]. Beijing: Seismological Press: 1 (in Chinese).
    占惠,梁全强,周红伟,杨婕,洪鹏欣. 2015. 联合GPS与重力资料反演福建地区地壳运动[J]. 大地测量与地球动力学,35(1):16–20. doi: 10.14075/j.jgg.2015.01.004
    Zhan H,Liang Q Q,Zhou H W,Yang J,Hong P X. 2015. Joint inversion of GPS and gravity data for crustal movement in Fujian area[J]. Journal of Geodesy and Geodynamics,35(1):16–20 (in Chinese).
    中国地震局震害防御司. 1999. 中国近代地震目录(公元1912年—1990年 MS≥4.7)[M]. 北京: 中国科学技术出版社: 9–11, 387–388.
    Department of Earthquake Disaster Prevention, State Seismology Bureau. 1999. The Catalogue of Chinese Modern Earthquakes (1912−1990 AD MS≥4.7)[M]. Beijing: Science and Technology of China Press: 9−11, 387−388 (in Chinese).
    钟继茂. 2009. 福建近岸海域滨海断裂的应力分析[J]. 地震地磁观测与研究,30(5):14–19.
    Zhong J M. 2009. Stress analysis on the Binhai fault in Fujian coastal sea area[J]. Seismological and Geomagnetic Observation and Research,30(5):14–19 (in Chinese).
    朱元清, 宋秀吉, 刘双庆. 2017. 中国地震测定参考速度结构研究[M]. 北京: 地震出版社: 228–244.
    Zhu Y Q, Song X J, Liu S Q. 2017. Research on Earthquake Reference Velocity Structure of China[M]. Beijing: Seismological Press: 228–244 (in Chinese).
    Allen R V. 1978. Automatic earthquake recognition and timing from single traces[J]. Bull Seismol Soc Am,68(5):1521–1532. doi: 10.1785/BSSA0680051521
    Allen R V. 1982. Automatic phase pickers:Their present use and future prospects[J]. Bull Seismol Soc Am,72(6B):S225–S242. doi: 10.1785/BSSA07206B0225
    Gibbons S J,Ringdal F. 2006. The detection of low magnitude seismic events using array-based waveform correlation[J]. Geophys J Int,165(1):149–166. doi: 10.1111/j.1365-246X.2006.02865.x
    Klein F W. 2002. Users Guide to HYPOINVERSE-2000: A Fortran Program to Solve for Earthquake Locations and Magnitudes[R]. Menlo Park: U.S. Geological Survey: 1–123.
    Liu M,Zhang M,Zhu W Q,Ellsworth W L,Li H Y. 2020. Rapid characterization of the July 2019 Ridgecrest,California,earthquake sequence from raw seismic data using machine-learning phase picker[J]. Geophys Res Lett,47(4):e2019GL086189.
    Liu M,Li H Y,Li L,Zhang M,Wang W T. 2022. Multistage nucleation of the 2021 Yangbi MS6.4 earthquake,Yunnan,China and its foreshocks[J]. J Geophys Res:Solid Earth,127(5):e2022JB024091.
    Shelly D R,Beroza G C,Ide S. 2007. Non-volcanic tremor and low-frequency earthquake swarms[J]. Nature,446(7133):305–307. doi: 10.1038/nature05666
    Turin G. 1960. An introduction to matched filters[J]. IRE Trans Inf Theory,6(3):311–329. doi: 10.1109/TIT.1960.1057571
    Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006
    Wessel P, Smith W H F. 1998. New, improved version of generic mapping tools released[J]. Eos, Trans Am Geophys Union, 79(47): 579.
    Wiemer S,Wyss M. 2000. Minimum magnitude of completeness in earthquake catalogs:Examples from Alaska,the western United States,and Japan[J]. Bull Seismol Soc Am,90(4):859–869. doi: 10.1785/0119990114
    Wiemer S. 2001. A software package to analyze seismicity:ZMAP[J]. Seismol Res Lett,72(3):373–382. doi: 10.1785/gssrl.72.3.373
    Zhang M,Ellsworth W L,Beroza G C. 2019. Rapid earthquake association and location[J]. Seismol Res Lett,90(6):2276–2284. doi: 10.1785/0220190052
    Zhou Y J,Yue H,Kong Q K,Zhou S Y. 2019. Hybrid event detection and phase-picking algorithm using convolutional and recurrent neural networks[J]. Seismol Res Lett,90(3):1079–1087. doi: 10.1785/0220180319
    Zhou Y J,Ghosh A,Fang L H,Yue H,Zhou S Y,Su Y J. 2021. A high-resolution seismic catalog for the 2021 MS6.4/MW6.1 Yangbi earthquake sequence,Yunnan,China:Application of AI picker and matched filter[J]. Earthquake Science,34(5):390–398. doi: 10.29382/eqs-2021-0031
    Zhou Y J. 2022. PAL and MESS[EB/OL]. [2022-08-02]. https://github.com/YijianZhou/PAL.
    Zhou Y J,Yue H,Fang L H,Zhou S Y,Zhao L,Ghosh A. 2022. An earthquake detection and location architecture for continuous seismograms:Phase picking,association,location,and matched filter (PALM)[J]. Seismol Res Lett,93(1):413–425. doi: 10.1785/0220210111
    Zhu L J,Peng Z G,McClellan J,Li C Y,Yao D D,Li Z F,Fang L H. 2019. Deep learning for seismic phase detection and picking in the aftershock zone of 2008 MW7.9 Wenchuan earthquake[J]. Phys Earth Planet Inter,293:106261. doi: 10.1016/j.pepi.2019.05.004
  • Cited by

    Periodical cited type(23)

    1. 赵琪,余中元,王晓山,陈柏旭. 巴颜喀拉块体南边界带西端当江断裂的活动构造变形:高分遥感的解译与野外验证. 华北地震科学. 2024(03): 61-68 .
    2. 尹滔,宋元宝,张伟,袁华云. 高分辨率遥感技术在川西毛垭坝地区活动断裂研究中的应用. 自然资源遥感. 2024(03): 174-186 .
    3. 茅远哲,张新东,吕国军,张合. 应用低空航测技术识别宣化盆地南缘断裂带. 高原地震. 2023(02): 56-62 .
    4. 杨彬,王华林,吴洪斌,葛孚刚,邹昊,苏思丽. 高精度LiDAR技术在活动断层断错地貌研究中的应用——以沂沭断裂带莒县至郯城段为例. 煤田地质与勘探. 2023(12): 57-68 .
    5. 张波,王爱国,田勤俭,葛伟鹏,贾伟,姚赟胜,袁道阳. 基于ALOS-PALSAR DEM的山体阴影图识别断裂线性——以西秦岭地区为例. 地震地质. 2022(01): 130-149 .
    6. 张迪,李家存,吴中海,刘绍堂,卢燕. 利用地面LiDAR精细化测量活断层微地貌形态——以毛垭坝断裂禾尼处断层崖为例. 地质力学学报. 2021(01): 63-72 .
    7. 潘光永,王鑫,张景发,刘国林,王纪强,侯志刚,李兵权. 太阳山断裂带及周边地区多源遥感断层构造解译与分析. 大地测量与地球动力学. 2021(07): 754-758 .
    8. 刘万平,赵艳军,姚佛军,苏野,胡宇飞. 柴达木盆地别勒滩地区断裂构造对深部卤水分布的控制作用研究. 地质学报. 2021(07): 2073-2081 .
    9. 李盼盼,陈国旭,刘盛东,李忠城,薛志亮,卢牧原. 基于高分卫星影像的断层构造识别及三维地质建模应用. 合肥工业大学学报(自然科学版). 2020(05): 680-687 .
    10. 尹春涛,谢文扬,王奇,刘磊,孟刚刚. 甘肃北山白峡尼山地区多源遥感岩性制图研究. 遥感技术与应用. 2020(05): 1146-1157 .
    11. 曹雪. 浅谈铁路工程勘察中真实感场景遥感技术的应用. 中国新通信. 2019(08): 93 .
    12. 唐毅. 改进高分辨率遥感影像测量断裂错动空间尺度的探讨研究. 地震工程学报. 2019(05): 1274-1279+1373 .
    13. 韩乐乐,丁伟翠,陈宣华,刘美玲,王叶,徐盛林,张达,崔艳军. 西准噶尔地区多源遥感信息的线性构造提取与定量分析. 中国地质. 2019(05): 1209-1223 .
    14. 王德华,张景发,杨佳佳,姜文亮,焦其松. 遥感技术在西藏当雄地区活动断裂调查中的应用. 大地测量与地球动力学. 2018(05): 487-492+515 .
    15. 王阳明,张景发,刘智荣,申旭辉. 基于多源遥感数据西藏山南地区活动断层解译. 国土资源遥感. 2018(03): 230-237 .
    16. 王鑫,张景发,李进田. 多源遥感与重力数据下的滁河断裂空间展布及构造特征. 地壳构造与地壳应力文集. 2018(00): 126-135 .
    17. 姜文亮,张景发,申旭辉,焦其松,田甜,王鑫. 高分辨率遥感技术在活动断层研究中的应用. 遥感学报. 2018(S1): 192-211 .
    18. 王鑫,张景发,姜文亮,王德华. 美国锁眼侦查卫星遥感数据在活动断层研究中的应用——以郯庐断裂带江苏段为例. 遥感学报. 2018(S1): 233-246 .
    19. 张波,王爱国,袁道阳,吴明,刘小丰,郑龙. 基于多源遥感解译和野外验证的断裂几何展布——以西秦岭光盖山-迭山南麓断裂为例. 地震地质. 2018(05): 1018-1039 .
    20. 王德华. 郯庐断裂带深部构造研究现状及存在的问题. 地壳构造与地壳应力文集. 2017(00): 33-44 .
    21. 王阳明,张景发,刘智荣. 活动断层遥感解译过程及应用. 地壳构造与地壳应力文集. 2017(00): 88-99 .
    22. 孟祥连,周福军. 真实感场景遥感技术在铁路工程勘察中的应用. 西南交通大学学报. 2017(05): 949-955 .
    23. 郑颖平,方良好,疏鹏,路硕. 郯庐断裂带明光-庐江段遥感特征分析. 中国地震. 2017(01): 129-140 .

    Other cited types(13)

Catalog

    Article views (728) PDF downloads (183) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return