Citation: | Yang X L,Feng J,Su L N,Yang J L. 2024. Hydraulic responses of groundwater-level in deep wells to the passage of a squall line in North China. Acta Seismologica Sinica,46(4):663−676. DOI: 10.11939/jass.20220214 |
Since the Mesozoic, the North China has experienced intensive seismic activity. Given its special seismo-tectonic background and unusually high level of seismic potential, a network of deep wells, primarily monitoring fault and crustal deformation precursors to destructive earthquakes, has been deployed in this area since late 1960s. Although these deep well-aquifer systems can effectively capture the tectonic transients, numerous spike-like signals associated with non-tectonic sources are always recorded in the groundwater levels; however, their physical mechanism have not been confirmed on a case-by-case basis up to now.
The squall line is a common type of meso-scale convective system usually defined as a group of violent thunderstorms or storm cells arranged in the form of a narrow (a few tens of kilometers) or long (several hundreds of kilometers) line in a Doppler radar. Furthermore, the typical life-span of a squall line can last several hours, and its propagation speed is approximately 60 km/h. The surface area affected by squall line is typically accompanied by abrupt changes in surface pressure and air temperature.
Squall lines occur with a high frequency in North China, but it is still unclear that how this kind of meso-scale severe weather disturbs the groundwater levels in deep wells. In view of the current situation, a target research is needed to reveal the features of hydraulic responses. On 21 September 2017, a squall line passed across the central North China, and significantly disturbed the groundwater levels in four wells deeper than 1 km, which are Wuji, Xinji, Yongqing, and Ningjin wells. Here we mainly adopt the spectrogram and linear regression methods to systematically examine the unique signals stimulated by this squall line. The results show that: ① From a macro perspective, the barometric pressures recorded at the deep wells can abruptly jump induced by the passage of squall line; instantly, the strong pulse-like disturbances were observed on groundwater level graphs associated with pressure jumps; ② The duration of disturbance could last as long as about 127 minutes for this case; ③ In the highfrequency band, the barometric waves induced by squall line have a period between 15 cpd (cycles per day) and 25 cpd. Correspondingly, the cross-correlation coefficients between barometric waves and groundwater changes can be lower than −0.95 for the four deep wells in this special frequency band. Furthermore, the barometric pressure response coefficients vary from about −4.9 mm/hPa to −6.9 mm/hPa for the four wells, determined as the linear regression coefficient between groundwater level and barometric pressure in the 15−25 cpd band-passed data. Our analysis shows that this work can extend our understating of the signatures caused by squall line in the field of groundwater research. Additionally, owing to the large amplitude of barometric waves, the squall line can help quantify the precise responses of groundwater levels in deep wells to barometric pressures in the high frequency band.
毕金孟,蒋长胜. 2019. 华北地区地震序列参数的分布特征[J]. 地球物理学报,62(11):4300–4312. doi: 10.6038/cjg2019M0453
|
Bi J M,Jiang C S. 2019. Distribution characteristics of earthquake sequence parameters in North China[J]. Chinese Journal of Geophysics,62(11):4300–4312 (in Chinese).
|
车用太,赵文忠,鱼金子,刘成龙. 2006. 京津冀地区井水位的数字化观测及其地震前兆监测效能评估[J]. 地震,26(4):103–112. doi: 10.3969/j.issn.1000-3274.2006.04.014
|
Che Y T,Zhao W Z,Yu J Z,Liu C L. 2006. Digitalized well-water-level observation and monitoring efficiency evaluation of earthquake precursor in the Beijing-Tianjin-Hebei region[J]. Earthquake,26(4):103–112 (in Chinese).
|
陈晓欣,俞小鼎,王秀明. 2022. 中国大范围雷暴大风事件(Derechos)研究:时空分布、环境背景和对流系统形态特征[J]. 气象学报,80(1):67–81. doi: 10.11676/qxxb2021.067
|
Chen X X,Yu X D,Wang X M. 2022. Investigation of Derechos in China:Spatiotemporal distribution,environmental characteristics,and morphology of Derechos producing convective systems[J]. Acta Meteorologica Sinica,80(1):67–81 (in Chinese).
|
丁一汇,李鸿洲,章名立,李吉顺,蔡则怡. 1982. 我国飑线发生条件的研究[J]. 大气科学,6(1):18–27. doi: 10.3878/j.issn.1006-9895.1982.01.03
|
Ding Y H,Li H Z,Chang M L,Li J S,Cai Z Y. 1982. A study on the genesis conditions of squall-line in China[J]. Scientia Atmospherica Sinica,6(1):18–27 (in Chinese).
|
董守玉,贾化周,万迪堃,秦清娟. 1987. 井水位气压系数的探讨[J]. 地震研究,10(1):63–70.
|
Dong S Y,Jia H Z,Wan D K,Qin Q J. 1987. Study of the atmospheric pressure coefficient of well water level[J]. Journal of Seismological Research,10(1):63–70 (in Chinese).
|
顾申宜,张慧,解晓静,刘阳,叶向顶. 2012. 海南井水位对热带气旋响应特征分析[J]. 地震学报,34(5):716–724. doi: 10.3969/j.issn.0253-3782.2012.05.013
|
Gu S Y,Zhang H,Xie X J,Liu Y,Ye X D. 2012. Analysis on features of well water response in Hainan Province to tropical cyclones[J]. Acta Seismologica Sinica,34(5):716–724 (in Chinese).
|
韩文英,梁丽环,尹宏伟,郭学增. 2017. 一次气压扰动引起的水位变化[J]. 防灾减灾学报,33(4):59–65.
|
Han W Y,Liang L H,Yin H W,Guo X Z. 2017. A pressure disturbance caused by the water level change[J]. Journal of Disaster Prevention and Reduction,33(4):59–65 (in Chinese).
|
扈忠慈,陆长荣,白乃英,孙文起. 1987. 华北平原飑线与一般对流活动发生条件的对比分析[J]. 气象,13(8):8–13. doi: 10.7519/j.issn.1000-0526.1987.08.002
|
Hu Z C,Lu C R,Bai N Y,Sun W Q. 1987. Analysis of occurrence of squall line and commonly convective activity over North China[J]. Meteorological Monthly,13(8):8–13 (in Chinese).
|
李鸿洲,蔡则怡,徐元泰. 1999. 华北强飑线生成环境与地形作用的数值试验研究[J]. 大气科学,23(6):713–721. doi: 10.3878/j.issn.1006-9895.1999.06.08
|
Li H Z,Cai Z Y,Xu Y T. 1999. A numerical experiment of topographic effect on genesis of the squall line in North China[J]. Chinese Journal of Atmospheric Sciences,23(6):713–721 (in Chinese).
|
李文英,张清荣,平建军. 1994. 华北地区地震短临异常综合标志及预报指标的研究[J]. 地震,14(1):23–30.
|
Li W Y,Zhang Q R,Ping J J. 1994. Comprehensive mark of short-term and impending anomaly in North China and study on prediction index[J]. Earthquake,14(1):23–30 (in Chinese).
|
柳畅,石耀霖,郑亮,朱伯靖. 2012. 三维黏弹性数值模拟华北盆地地震空间分布与构造应力积累关系[J]. 地球物理学报,55(12):3942–3957. doi: 10.6038/j.issn.0001-5733.2012.12.007
|
Liu C,Shi Y L,Zheng L,Zhu B J. 2012. Relation between earthquake spatial distribution and tectonic stress accumulation in the North China Basin based on 3D visco-elastic modelling[J]. Chinese Journal of Geophysics,55(12):3942–3957 (in Chinese).
|
沈杭锋,方桃妮,蓝俊倩,翟国庆,苏涛. 2019. 一次强飑线过程极端大风的中尺度分析[J]. 气象学报,77(5):806–822. doi: 10.11676/qxxb2019.052
|
Shen H F,Fang T N,Lan J Q,Zhai G Q,Su T. 2019. Mesoscale analysis of the extremely damaging gale in a severe squall line[J]. Acta Meteorologica Sinica,77(5):806–822 (in Chinese).
|
盛杰,郑永光,沈新勇. 2020. 华北两类产生极端强天气的线状对流系统分布特征与环境条件[J]. 气象学报,78(6):877–898. doi: 10.11676/qxxb2020.069
|
Sheng J,Zheng Y G,Shen X Y. 2020. Climatology and environmental conditions of two types of quasi-linear convective systems with extremely intense weather in North China[J]. Acta Meteorologica Sinica,78(6):877–898 (in Chinese).
|
王宏,马凤莲,王万筠. 2009. 河北承德一次飑线过程的多普勒雷达资料分析[J]. 干旱气象,27(1):29–33. doi: 10.3969/j.issn.1006-7639.2009.01.005
|
Wang H,Ma F L,Wang W J. 2009. Doppler radar data analysis of a squall line process in Chengde of Hebei Province[J]. Journal of Arid Meteorology,27(1):29–33 (in Chinese).
|
杨小林,危自根. 2018. 陕西石泉井不同频带水位对气压和固体潮的响应特征[J]. 大地测量与地球动力学,38(10):1096–1100.
|
Yang X L,Wei Z G. 2018. Response characteristics of water level to atmospheric loading and solid Earth tide in different frequency bands:A case study of the Shiquan well,Shaanxi[J]. Journal of Geodesy and Geodynamics,38(10):1096–1100 (in Chinese).
|
杨晓亮,杨敏. 2020. 2017年秋季河北一次飑线引发的雷暴大风过程分析[J]. 气象与环境学报,36(6):1–9. doi: 10.3969/j.issn.1673-503X.2020.06.001
|
Yang X L,Yang M. 2020. Analysis of a thunderstorm gale triggered by squall line in Autumn of 2017 over central Hebei Province[J]. Journal of Meteorology and Environment,36(6):1–9 (in Chinese).
|
尹凤玲,张怀,石耀霖. 2015. 华北地区水位下降是否会减缓气温上升:浅部地温影响的数值模拟分析[J]. 地球物理学报,58(10):3649–3659. doi: 10.6038/cjg20151018
|
Yin F L,Zhang H,Shi Y L. 2015. Persistent drawdown of groundwater table in North China may reduce local climate warming rate:Numerical simulation and analysis of the impacts on shallow ground temperature[J]. Chinese Journal of Geophysics,58(10):3649–3659 (in Chinese).
|
俞小鼎,郑永光. 2020. 中国当代强对流天气研究与业务进展[J]. 气象学报,78(3):391–418. doi: 10.11676/qxxb2020.035
|
Yu X D,Zheng Y G. 2020. Advances in severe convective weather research and operational service in China[J]. Acta Meteorologica Sinica,78(3):391–418 (in Chinese).
|
张国民,石耀霖,张永仙. 1995. 华北北部短临前兆场特征与震源过程的数值模拟[J]. 中国地震,11(4):327–340.
|
Zhang G M,Shi Y L,Zhang Y X. 1995. Characteristics of short-imminent earthquake precursory field in the northern part of North China and numerical simulation of earthquake source development[J]. Earthquake Research in China,11(4):327–340 (in Chinese).
|
张凌空,吴利军,杨颖. 2012. 雷暴产生的气压突变对体应变与同井水位干扰的对比研究[J]. 中国地震,28(1):69–77. doi: 10.3969/j.issn.1001-4683.2012.01.008
|
Zhang L K,Wu L J,Yang Y. 2012. Comparative study of the interference of mutation pressure generated by thunderstorms with volume strain and same well water-level[J]. Earthquake Research in China,28(1):69–77 (in Chinese).
|
张昭栋,郑金涵,张广城,靖继才. 1989a. 承压井水位对气压动态过程的响应[J]. 地球物理学报,32(5):539–549.
|
Zhang Z D,Zheng J H,Zhang G C,Jing J C. 1989a. Response of water level of confined well to dynamic process of barometric pressure[J]. Acta Geophysica Sinica,32(5):539–549 (in Chinese).
|
张昭栋,郑金涵,冯初刚. 1989b. 井水位的固体潮效应和气压效应与含水层参数间的定量关系[J]. 西北地震学报,11(3):47–52.
|
Zhang Z D,Zheng J H,Feng C G. 1989b. Quantitative relationship between the Earth tide effect of well water level,the barometric pressure effect and the parameters of aquifers[J]. Northwestern Seismological Journal,11(3):47–52 (in Chinese).
|
张昭栋,郑金涵,张广城. 1993. 井水位对气压响应的滞后及其机理[J]. 地壳形变与地震,13(4):51–56.
|
Zhang Z D,Zheng J H,Zhang G C. 1993. Response lag of well water level to barometric pressure and its mechanism[J]. Crustal Deformation and Earthquake,13(4):51–56 (in Chinese).
|
张子广,张素欣,张跃刚,李薇,尹宏伟,韩文英. 2005. 河北省地下流体数字与模拟资料对比研究[J]. 华北地震科学,23(4):6–12. doi: 10.3969/j.issn.1003-1375.2005.04.002
|
Zhang Z G,Zhang S X,Zhang Y G,Li W,Yin H W,Han W Y. 2005. Comparison and research on digital and analogue subsurface fluid data[J]. North China Earthquake Sciences,23(4):6–12 (in Chinese).
|
张子广,盛艳蕊,张素欣,李薇,尹宏伟. 2010. 井水位对气压扰动的响应[J]. 地震研究,33(2):170–175. doi: 10.3969/j.issn.1000-0666.2010.02.008
|
Zhang Z G,Sheng Y R,Zhang S X,Li W,Yin H W. 2010. Response of water level on the well to air pressure perturbation[J]. Journal of Seismological Research,33(2):170–175 (in Chinese).
|
赵虹,燕成玉,刘寅,陆一磊. 2020. 江苏一次强对流天气的中尺度诊断分析[J]. 科技通报,36(3):34–42.
|
Zhao H,Yan C Y,Liu Y,Lu Y L. 2020. Mesoscale diagnostic analysis of a strong convective system in Jiangsu Province[J]. Bulletin of Science and Technology,36(3):34–42 (in Chinese).
|
赵亚民,魏文秀. 1984. 飑线群发展的若干特征[J]. 气象,10(12):19–20. doi: 10.7519/j.issn.1000-0526.1984.12.005
|
Zhao Y M,Wei W X. 1984. Some characteristics of the development process for the squall line swarm[J]. Meteorological Monthly,10(12):19–20 (in Chinese).
|
庄薇,刘黎平,薄兆海,肖艳娇. 2010. 新疆一次强飑线过程双多普勒雷达观测的中尺度风场结构分析[J]. 气象学报,68(2):224–234. doi: 10.11676/qxxb2010.023
|
Zhuang W,Liu L P,Bo Z H,Xiao Y J. 2010. Study of the mesoscale wind field structure of a strong squall line in the Xinjiang Uygur Autonomous Region based on the dual-Doppler radar observations[J]. Acta Meteorologica Sinica,68(2):224–234 (in Chinese).
|
Das K,Sarkar S,Mukherjee A,Das P,Pathak A. 2021. Observing tidal and storm generated wave height impact on groundwater levels in a tropical delta (the Sundarbans)[J]. J Hydrol,603:126813. doi: 10.1016/j.jhydrol.2021.126813
|
Lai G J,Ge H K,Wang W L. 2013. Transfer functions of the well-aquifer systems response to atmospheric loading and Earth tide from low to high-frequency band[J]. J Geophys Res:Solid Earth,118(5):1904–1924. doi: 10.1002/jgrb.50165
|
Meng Z Y,Yan D C,Zhang Y J. 2013. General features of squall lines in East China[J]. Mon Wea Rev,141(5):1629–1647. doi: 10.1175/MWR-D-12-00208.1
|
Roeloffs E. 1996. Poroelastic techniques in the study of earthquake-related hydrologic phenomena[J]. Adv Geophys,37:135–195.
|
Sun X L,Xiang Y. 2020. Comparison of transfer function models for well-aquifer system response to atmospheric loading[J]. J Hydrol,590:125494. doi: 10.1016/j.jhydrol.2020.125494
|
Zhang Y,Fu L Y,Ma Y C,Hu J H. 2016. Different hydraulic responses to the 2008 Wenchuan and 2011 Tohoku earthquakes in two adjacent far-field wells:The effect of shales on aquifer lithology[J]. Earth Planets Space,68(1):178. doi: 10.1186/s40623-016-0555-5
|