Citation: | Zhang J J,Chen L,Li Y L,Liu M S,Shi S W,Yi J S,Zhang W,Zhang S L,Sun J H,Yang D,Xian J L,Cai J J. 2023. Development characteristics and controlling factors of co-seismic geo-hazards triggered by the Luding MS6.8 earthquake on September 5,2022. Acta Seismologica Sinica,45(2):167−178 doi: 10.11939/jass.20220215 |
[1] |
Bai M K,Marie-Luce C,Li H B,Pan J W,Wu Q,Wang S G,Liu F C,Jiao L Q,Zhang J J,Zhang L,Gong Z. 2022. Late Quaternary slip rate and earthquake hazard along the Qianning segment,Xianshuihe fault[J]. Acta Geologica Sinica,96(7):2312–2332 (in Chinese).
|
[2] |
Cui P,Chen X Q,Zhang J Q,Yang Z J,You Y,Fan J R,Su F H,Kong Y D,Zhu X H. 2013. Activities and tendency of mountain hazards induced by the MS7.0 Lushan earthquake,April 20,2013[J]. Journal of Mountain Science,31(3):257–265 (in Chinese).
|
[3] |
Dai L X,Xu Q,Fan X M,Chang M,Yang Q,Yang F,Ren J. 2017. A preliminary study on spatial distribution patterns of landslides triggered by Jiuzhaigou earthquake in Sichuan on August 8th,2017 and their susceptibility assessment[J]. Journal of Engineering Geology,25(4):1151–1164 (in Chinese).
|
[4] |
Fan X M,Fang C Y,Dai L X,Wang X,Luo Y H,Wei T,Wang Y S. 2022a. Near real time prediction of spatial distribution probability of earthquake-induced landslides:Take the Lushan earthquake on June 1,2022 as an example[J]. Journal of Engineering Geology,30(3):729–739 (in Chinese).
|
[5] |
Fan X M,Wang X,Dai L X,Fang C Y,Deng Y,Zou C B,Tang M G,Wei Z L,Dou X Y,Zhang J,Yang F,Chen L,Wei T,Yang Y S,Zhang X X,Xia M Y,Ni T,Tang X C,Li W L,Dai K R,Dong X J,Xu Q. 2022b. Characteristics and spatial distribution pattern of MS6.8 Luding earthquake occurred on September 5,2022[J]. Journal of Engineering Geology,30(5):1504–1516 (in Chinese).
|
[6] |
Fu X F,Hou L W,Li H B,Wang Z X,Zou F G. 2008. Coseismic deformation of the MS8.0 Wenchuan earthquake and its relationship with geological hazards[J]. Acta Geologica Sinica,82(12):1733–1746 (in Chinese).
|
[7] |
Huang R Q. 2011. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology,19(2):145–151 (in Chinese).
|
[8] |
Huang R Q,Li W L. 2008. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May,2008[J]. Chinese Journal of Rock Mechanics and Engineering,27(12):2585–2592 (in Chinese).
|
[9] |
Li H L,Huang H,Li Y L,Zhang J J,Wang L,Li B X. 2022. Geohazard effect of plate suture zone along Sichuan-Tibet railway[J]. Earth Science,47(12):1–23 (in Chinese).
|
[10] |
Ni H Y. 2010. Geomorphologic characteristics of typical debris-flow basins in Hailuogou scenic spot and disaster prevention[J]. Research of Soil and Water Conservation,17(1):154–158 (in Chinese).
|
[11] |
Pan J W,Li H B,Chevalier M L,Bai M K,Liu F C,Liu D L,Zheng Y,Lu H J,Zhao Z B. 2020. A newly discovered active fault on the Selaha-Kangding segment along the SE Xianshuihe fault:The South Mugecuo fault[J]. Acta Geologica Sinica,94(11):3178–3188 (in Chinese).
|
[12] |
Xianshuihe Active Fault Zone Mapping Group, Seismic Geological Team, Sichuan Earthquake Administration. 2013. Manual of Geological Map of Xianshuihe Active Fault Zone (1∶50 000)[M]. Beijing: Seismological Press: 1 (in Chinese).
|
[13] |
Tang C,Liang J T. 2008. Characteristics of debris flows in Beichuan epicenter of the Wenchuan earthquake triggered by rainstorm on September 24,2008[J]. Journal of Engineering Geology,16(6):751–758 (in Chinese).
|
[14] |
Tie Y B,Zhang X Z,Lu J Y,Liang J T,Wang D H,Ma Z G,Li Z L,Lu T,Shi S W,Liu M S,Ba R J,He L J,Zhang X K,Gan W,Chen K,Gao Y C,Bai Y J,Gong L F,Zeng X W,Xu W. 2022. Characteristics of geological hazards and it’s mitigations of the MS6.8 earthquake in Luding county,Sichuan Province[J]. Hydrogeology &Engineering Geology,49(6):1–12 (in Chinese).
|
[15] |
Wen X Z,Allen C R,Luo Z L,Qian H,Zhou H W,Huang W S. 1989. Segmentation,geometric features,and their seismotectonic implications for the Holocene Xianshuihe fault zone[J]. Acta Seismologica Sinica,11(4):362–372 (in Chinese).
|
[16] |
Xu C,Xu X W,Wu X Y,Dai F C,Yao X,Yao Q. 2013. Detailed catalog of landslides triggered by the 2008 Wenchuan earthquake and statistical analyses of their spatial distribution[J]. Journal of Engineering Geology,21(1):25–44 (in Chinese).
|
[17] |
Xu Q,Li W L. 2010. Distribution of large-scale landslides induced by the Wenchuan earthquake[J]. Journal of Engineering Geology,18(6):818–826 (in Chinese).
|
[18] |
Yin Y P. 2008. Researches on the geo-hazards triggered by Wenchuan earthquake,Sichuan[J]. Journal of Engineering Geology,16(4):433–444 (in Chinese).
|
[19] |
Yin Z Q,Zhao W J,Chu H L,Sun W. 2014. Basic characteristics of geohazards induced by Lushan earthquake and compare to them of Wenchuan earthquake[J]. Acta Geologica Sinica,88(6):1145–1156 (in Chinese).
|
[20] |
Zhang J J,Li H B,Zhao G H,Li Y,Yan Z K,Wang H,Yun K. 2015. Features of secondary mountain hazards triggered by the 2013 Lushan earthquake,Sichuan Province[J]. Geological Bulletin of China,34(5):898–907 (in Chinese).
|
[21] |
Zhao D J,Wang D Y,Wu D C,Liu Y C. 2008. Structural deformation and kinematics of the Moxi fault in western Sichuan[J]. Sedimentary Geology and Tethyan Geology,28(3):15–20 (in Chinese).
|
[22] |
Zheng B X. 2001. Study on the Quaternary glaciation and the formation of the Moxi platform in the east slopes of the Mount Gongga[J]. Journal of Glaciology and Geocryology,23(3):283–291 (in Chinese).
|
[23] |
Institute of Geophysics, China Earthquake Administration. 2022. The source characteristics of the Luding 6.8 earthquake in Ganzi prefecture, Sichuan Province on September 5, 2022[EB/OL]. [2022-09-06]. http://mp.weixin.qq.com/s?__biz=MzA4MzkxODc5Nw==&mid=2247485850&idx=1&sn=da384b868f35745092495f41e124d4d6&chksm=9fee6338a899ea2eccdfe5c4ca5a8c4ff5fe8aa474f5d1c12d5ad9b16b508f99f915d9d8af8c#rd (in Chinese).
|
[24] |
Zhou H F, Wei Y T, Wang Y S, Liu H. 2017. Discussion on the formation evolution and genetic mechanism of Mogangling landslide triggered by Moxi earthquake, Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 44(6): 649–658 (in Chinese).
|
[25] |
Bai M K,Chevalier M L,Pan J W,Replumaz A,Leloup P H,Métois M,Li H B. 2018. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault,eastern Tibet:Geodynamic and seismic hazard implications[J]. Earth Planet Sci Lett,485:19–31. doi: 10.1016/j.jpgl.2017.12.045
|
[26] |
Jiang G Y,Xu X W,Chen G H,Liu Y J,Fukahata Y,Wang H,Yu G H,Tan X B,Xu C J. 2015. Geodetic imaging of potential seismogenic asperities on the Xianshuihe-Anninghe-Zemuhe fault system,southwest China,with a new 3-D viscoelastic interseismic coupling model[J]. J Geophys Res:Solid Earth,120(3):1855–1873. doi: 10.1002/2014JB011492
|
[27] |
Khan S F,Kamp U,Owen L A. 2013. Documenting five years of landsliding after the 2005 Kashmir earthquake,using repeat photography[J]. Geomorphology,197:45–55. doi: 10.1016/j.geomorph.2013.04.033
|
[28] |
Lin C W,Liu S H,Lee S Y,Liu C C. 2006. Impacts of the Chi-Chi earthquake on subsequent rainfall-induced landslides in central Taiwan[J]. Eng Geol,86(2/3):87–101.
|
[29] |
Nakamura H, Tsuchiya S, Inoue K, Ishikawa Y. 2000. Sabo Against Earthquakes[M]. Tokyo: Kokon Shoin: 190–220.
|
[30] |
Shao Z G,Xu J,Ma H S,Zhang L P. 2016. Coulomb stress evolution over the past 200 years and seismic hazard along the Xianshuihe fault zone of Sichuan,China[J]. Tectonophysics,670:48–65. doi: 10.1016/j.tecto.2015.12.018
|
[31] |
Yin Y P,Wang F W,Sun P. 2009. Landslide hazards triggered by the 2008 Wenchuan earthquake,Sichuan,China[J]. Landslides,6(2):139–152. doi: 10.1007/s10346-009-0148-5
|