Citation: | Yu J H,Niu X W,Jin Z D,Niu L H,Ruan A G,Ding W W,Zhu X Y,Liu Z J,Liu B W,Zhuang C T,Li J B. 2025. The seismometer-detached ocean bottom seismograph and its experiments in the Gakkel Ridge,Arctic Ocean. Acta Seismologica Sinica,47(2):284−296. DOI: 10.11939/jass.20230152 |
The ocean bottom seismograph (OBS) is an indispensable instrument for investigating the deep crust-mantle structure. China’s 12th Arctic scientific expedition marked a significant milestone in marine seismic exploration by achieving the first large-scale active exploration along the challenging Gakkel Ridge in the Arctic Ocean, where ice coverage poses formidable obstacles. Impressively, the expedition successfully recovered 42 out of 43 deployed OBSs, with all five seismometer-detached OBSs retrieved intact. This paper introduces a seismometer-detached OBS specifically developed to overcome the unique challenges encountered during the expedition, particularly in terms of OBS recovery and positioning. Its main features include:
1) The newly developed seismometer-detached OBS integrates cutting-edge technology to enhance its functionality and performance under harsh Arctic conditions. One of its key innovations is the combination of ultra-short baseline beacons and advanced acoustic response short baseline array positioning systems, which improves positioning accuracy through dual positioning technology. The positioning accuracy error of the short baseline array is within ±100 m, and the mature Sonardyne ultra-short baseline array loaded on the Xuelong-2 polar scientific research icebreaker can achieve a positioning accuracy up to one thousandth of the water depth. The use of such a dual positioning system can ensure accurate positioning of the instrument even in areas with dense ice layers. This ground-breaking design significantly improves the accuracy and efficiency of OBS recovery operations, enabling researchers to locate and recover instruments with unprecedented reliability and precision.
2) Referencing the current status of seismometer-detached OBSs both domestically and internationally, a titanium alloy seismic instrument chamber with a buoyancy of 17 kg in water has been designed. This chamber is incorporated into the seismic instrument separation structure, independently installed inside the OBS hull via flexible cables. Upon reaching the seafloor, it is timed to release, optimizing the coupling between the seismic instrument and the seabed. This structure also serves to reduce the impact of bottom currents on the seismometer. By enhancing this coupling, the OBS effectively improves the signal-to-noise ratio for recording seismic data, thus minimizing ambient noise and interference. Consequently, researchers can obtain clearer and more accurate seismic records, thereby facilitating a deeper understanding of the Earth’s geological processes and tectonic activities.
3) The OBS utilizes advanced domestic seismic instruments and buoyancy materials. On one hand, this provides new options for the materials used in OBS development, to some extent alleviating the problem of insufficient component production, which is advantageous for the large-scale production and industrialization. On the other hand, it enhances the flexibility of the OBS’s design, enabling the possibility of loading multi-functional modules onto the OBS. Additionally, using domestically produced seismometers makes it easier to optimize and develop hardware and software according to scientific research requirements. This signifies a significant step towards achieving self-sufficiency in marine instrument technology. This domestic production capacity not only enhances China’s scientific research capabilities, but also promotes innovation and technological advancement in the field of marine instruments, establishing independent intellectual property rights for key technologies of marine seismographs.
China’s 12th Arctic scientific expedition has yielded promising results, with the seismometer-detached OBS demonstrating exceptional performance in recording seismic signals. It was capable of collecting seismic data in the low-level horizontal seismic ambient noise environment along the Gakkel Ridge of the Arctic Ocean. Notably, the OBSs have exhibited low horizontal seismic ambient noise levels, underscoring their suitability for seismic exploration in ice-covered marine environments. Additionally, these OBSs successfully collected the waveform records of a small teleseismic, two micro-earthquakes and three-component active seismic exploration. This validates to some extent the effectiveness of the seismometer-detached structure in improving the signal-to-noise ratio, indicating that this type of OBS can meet the requirements for submarine exploration under the ice.
The successful development and application of the seismometer-detached OBS provide valuable experience for future submarine seismic exploration in extreme environments. Looking ahead, there are opportunities for further enhancement in various aspects such as real-time data transmission, longer battery life, and integration of more modularized sensors. The use of flexible buoyancy materials also liberates the submarine seismograph from the limitations imposed by traditional glass chambers. This enables the configuration of different types of modularized sensors, thus paving the way for the development of a versatile submarine observation platform with powerful functionality.
郝天珧,游庆瑜. 2011. 国产海底地震仪研制现状及其在海底结构探测中的应用[J]. 地球物理学报,54(12):3352–3361.
|
Hao T Y,You Q Y. 2011. Progress of homemade OBS and its application on ocean bottom structure survey[J]. Chinese Journal of Geophysics,54(12):3352–3361 (in Chinese).
|
郝天珧,游庆瑜,王元,郭永刚,丘学林,黄松,徐亚,赵春蕾,张妍,徐锡强. 2022. 国产海底地震探测装备技术研发与应用[J]. 科学技术与工程,22(34):15020–15027.
|
Hao T Y,You Q Y,Wang Y,Guo Y G,Qiu X L,Huang S,Xu Y,Zhao C L,Zhang Y,Xu X Q. 2022. Development technology and its application of Chinese ocean bottom seismometer[J]. Science Technology and Engineering,22(34):15020–15027 (in Chinese).
|
李江,庄灿涛,薛兵,朱小毅,陈阳,朱杰,彭朝勇,叶鹏,梁鸿森,刘明辉,杨桂存,周银兴,林湛,李建飞. 2010. 宽频带海底地震仪的研制[J]. 地震学报,32(5):610–618.
|
Li J,Zhuang C T,Xue B,Zhu X Y,Chen Y,Zhu J,Peng C Y,Ye P,Liang H S,Liu M H,Yang G C,Zhou Y X,Lin Z,Li J F. 2010. Development of broadband ocean bottom seismograph (OBS)[J]. Acta Seismologica Sinica,32(5):610–618 (in Chinese).
|
李守军,包更生,吴水根. 2005. 水声定位技术的发展现状与展望[J]. 海洋技术,24(1):130–135.
|
Li S J,Bao G S,Wu S G. 2005. A practical overview and prospect of acoustic positioning technology[J]. Journal of Ocean Technology,24(1):130–135 (in Chinese).
|
刘丹,杨挺,黎伯孟,吴越楚,王宜志,黄信锋,杜浩然,王建,陈永顺. 2022. 分体式宽频带海底地震仪的研制、测试和数据质量分析[J]. 地球物理学报,65(7):2560–2572.
|
Liu D,Yang T,Li B M,Wu Y C,Wang Y Z,Huang X F,Du H R,Wang J,Chen Y S. 2022. Seismometer-detached broadband ocean bottom seismograph (OBS):Development,test,and data quality analysis[J]. Chinese Journal of Geophysics,65(7):2560–2572 (in Chinese).
|
牛雄伟,王力,丁巍伟,黄松华,孔凡圣,冯海泓,谭平川,史淼奇,傅建华,陈尚国. 2022. 一种适用于冰区的短基线承载结构:中国,202111670786.4[P]. [2022−06−21]. https://pss-system.cponline.cnipa.gov.cn/documents/detail?prevPageTit=changgui.
|
Niu X W,Wang L,Ding W W,Huang S H,Kong F S,Feng H H,Tan P C,Shi M Q,Fu J H,Chen S G. 2022. Short base line bearing structure suitable for ice region:CN,202111670786.4[P]. [2022−06−21] https://pss-system.cponline.cnipa.gov.cn/documents/detail?prevPageTit=changgui (in Chinese).
|
阮爱国,李家彪,冯占英,吴振利. 2004. 海底地震仪及其国内外发展现状[J]. 东海海洋,22(2):19–27.
|
Ruan A G,Li J B,Feng Z Y,Wu Z L. 2004. Ocean bottom seismometer and its development in the world[J]. Donghai Marine Science,22(2):19–27 (in Chinese).
|
阮爱国,牛雄伟,吴振利,吴招才,薛彬. 2009. 潮汕坳陷中生代沉积的折射波2D速度结构和密度[J]. 高校地质学报,15(4):522–528.
|
Ruan A G,Niu X W,Wu Z L,Wu Z C,Xue B. 2009. The 2D velocity and density structure of the Mesozoic sediments in the Chaoshan depression[J]. Geological Journal of China Universities,15(4):522–528 (in Chinese).
|
阮爱国,李家彪,陈永顺,丘学林,吴振利,赵明辉,牛雄伟,王春龙,王显光. 2010. 国产I-4C型OBS在西南印度洋中脊的试验[J]. 地球物理学报,53(4):1015–1018.
|
Ruan A G,Li J B,Chen Y S,Qiu X L,Wu Z L,Zhao M H,Niu X W,Wang C L,Wang X G. 2010. The experiment of broad band I-4C type OBS in the Southwest India ridge[J]. Chinese Journal of Geophysics,53(4):1015–1018 (in Chinese).
|
游庆瑜,刘福田,冉崇荣,王广福. 2003. 高频微功耗海底地震仪研制[J]. 地球物理学进展,18(1):173–176.
|
You Q Y,Liu F T,Ran C R,Wang G F. 2003. High frequency micro-power ocean bottom seismograph[J]. Progress in Geophysics,18(1):173–176 (in Chinese).
|
张同伟,王向鑫,唐嘉陵,秦升杰. 2018. 深海超短基线定位系统现状及展望[J]. 舰船电子工程,38(10):1–6. doi: 10.3969/j.issn.1672-9730.2018.10.001
|
Zhang T W,Wang X X,Tang J L,Qin S J. 2018. Technical status and development trend of long range USBL[J]. Ship Electronic Engineering,38(10):1–6 (in Chinese).
|
Beyreuther M,Barsch R,Krischer L,Megies T,Behr Y,Wassermann J. 2010. ObsPy:A Python toolbox for seismology[J]. Seismol Res Lett,81(3):530–533. doi: 10.1785/gssrl.81.3.530
|
Christeson G L,Goff J A,Reece R S. 2019. Synthesis of oceanic crustal structure from two-dimensional seismic profiles[J]. Rev Geophys,57(2):504–529. doi: 10.1029/2019RG000641
|
Crawford W C,Webb S C. 2000. Identifying and removing tilt noise from low-frequency (<0.1 Hz) seafloor vertical seismic data[J]. Bull Seismol Soc Am,90(4):952–963. doi: 10.1785/0119990121
|
Ding W W,Niu X W,Zhang T,Chen S G,Liu S H,Tan P C,Kong F S,Jin Z D,Huang S H,Wei C H,Fang Y X,Sun Q C,Li J B. 2022. Submarine wide-angle seismic experiments in the high Arctic:The JASMInE expedition in the slowest spreading Gakkel Ridge[J]. Geosyst Geoenviron,1(3):100076. doi: 10.1016/j.geogeo.2022.100076
|
Jokat W,Schmidt-Aursch M C. 2007. Geophysical characteristics of the ultraslow spreading Gakkel Ridge,Arctic Ocean[J]. Geophys J Int,168(3):983–998. doi: 10.1111/j.1365-246X.2006.03278.x
|
Jokat W,Ritzmann O,Schmidt-Aursch M C,Drachev S,Gauger S,Snow J. 2003. Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel mid-ocean ridge[J]. Nature,423(6943):962–965. doi: 10.1038/nature01706
|
Kennett B L N,Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification[J]. Geophys J Int,105(2):429–465. doi: 10.1111/j.1365-246X.1991.tb06724.x
|
Korger E I M,Schlindwein V. 2014. Seismicity and structure of the 85°E volcanic complex at the ultraslow spreading Gakkel Ridge from local earthquake tomography[J]. Geophys J Int,196(1):539–551. doi: 10.1093/gji/ggt390
|
Koulakov I,Schlindwein V,Liu M Q,Gerya T,Jakovlev A,Ivanov A. 2022. Low-degree mantle melting controls the deep seismicity and explosive volcanism of the Gakkel Ridge[J]. Nat Commun,13(1):3122. doi: 10.1038/s41467-022-30797-4
|
Longuet-Higgins M S. 1950. A theory of the origin of microseisms[J]. Philos Trans Roy Soc A:Math Phys Eng Sci,243(857):1–35.
|
McGuire J J,Collins J A,Gouédard P,Roland E,Lizarralde D,Boettcher M S,Behn M D,van der Hilst R D. 2012. Variations in earthquake rupture properties along the Gofar transform fault,East Pacific Rise[J]. Nat Geosci,5(5):336–341. doi: 10.1038/ngeo1454
|
McNamara D E,Buland R P. 2004. Ambient noise levels in the continental United States[J]. Bull Seismol Soc Am,94(4):1517–1527. doi: 10.1785/012003001
|
Minshull T A,Muller M R,White R S. 2006. Crustal structure of the Southwest Indian Ridge at 66°E:Seismic constraints[J]. Geophys J Int,166(1):135–147. doi: 10.1111/j.1365-246X.2006.03001.x
|
Mosher D C,Chapman C B,Shimeld J,Jackson H R,Chian D,Verhoef J,Hutchinson D,Lebedeva-Ivanova N,Pederson R. 2013. High Arctic marine geophysical data acquisition[J]. Leading Edge,32(5):524–536. doi: 10.1190/tle32050524.1
|
Niu X W,Minshull T A,Li J B,Ruan A G,Wu Z L,Wei X D,Wang W,Li Y,Bayrakci G,Dong C Z,Ding W W,Fang Y X,Zhang J. 2023. Shear wave velocity structure and crustal lithology beneath the ultraslow spreading Southwest Indian Ridge at 50°E[J]. Geophys J Int,233(2):1416–1428. doi: 10.1093/gji/ggac516
|
Peterson J R. 1993. Observations and Modeling of Seismic Background Noise[R]. Albuquerque:U.S. Geol. Surv.:93−322.
|
Rekant P V,Gusev E A. 2016. Sediments in the Gakkel Ridge rift zone (Arctic Ocean):Structure and history[J]. Russ Geol Geophys,57(9):1283–1287. doi: 10.1016/j.rgg.2016.08.013
|
Schlindwein V,Müller C,Jokat W. 2007. Microseismicity of the ultraslow-spreading Gakkel Ridge,Arctic Ocean:A pilot study[J]. Geophys J Int,169(1):100–112. doi: 10.1111/j.1365-246X.2006.03308.x
|
Seher T,Crawford W C,Singh S C,Cannat M,Combier V,Dusunur D. 2010. Crustal velocity structure of the Lucky Strike segment of the Mid-Atlantic Ridge at 37°N from seismic refraction measurements[J]. J Geophys Res:Solid Earth,115(B3):B03103.
|
Stähler S C,Sigloch K,Hosseini K,Crawford W C,Barruol G,Schmidt-Aursch M C,Tsekhmistrenko M,Scholz J R,Mazzullo A,Deen M. 2016. Performance report of the RHUM-RUM ocean bottom seismometer network around La Réunion,western Indian Ocean[J]. Adv Geosci,41:43–63. doi: 10.5194/adgeo-41-43-2016
|
Sutton G H,Duennebier F K. 1987. Optimum design of ocean bottom seismometers[J]. Mar Geophys Res,9(1):47–65. doi: 10.1007/BF00338250
|
USGS. 2021. Earthquake lists,maps,and statistics[EB/OL]. [2023−08−18]. https://www.usgs.gov/natural-hazards/earthquake-hazards/lists-maps-and-statistics.
|
Webb S C. 1988. Long-period acoustic and seismic measurements and ocean floor currents[J]. IEEE J Oceanic Eng,13(4):263–270. doi: 10.1109/48.9239
|
1. |
王桂林,刘芳,王韬,翟浩,舒雷,贾彦杰,韩晓雷,周煊超,魏建民,郭伟,苏日亚,赵艳红,张茜,尚立坚,贾昕晔,吴卫远,戴怡茹. 内蒙古黑岱沟露天煤矿抛掷爆破地方性震级与炸药量的经验关系. 地震研究. 2025(01): 170-176 .
![]() | |
2. |
谢紫藤,刘瑞丰,王子博,李赞,孔韩东,胡岩松. 震源机制对地震辐射能量估计的影响. 地震学报. 2023(04): 597-608 .
![]() | |
3. |
孔韩东,刘瑞丰,边银菊,李赞,王子博,胡岩松. 地震辐射能量测定方法研究及其在汶川8.0级地震中的应用. 地球物理学报. 2022(12): 4775-4788 .
![]() | |
4. |
冯增朝,吕兆兴,赵阳升. 岩石破坏短临预报研究进展——岩石破坏短临预报竞赛评述. 岩石力学与工程学报. 2022(12): 2522-2529 .
![]() | |
5. |
詹小艳,章东,王凯,王俊. 江苏数字地震台网P波谱震级和地震辐射能的计算. 地震研究. 2021(01): 15-21 .
![]() | |
6. |
王子博,刘瑞丰,孙丽,李赞,孔韩东. 2021年云南漾濞M_S6.4地震辐射能量的快速测定. 地震地质. 2021(04): 908-919 .
![]() | |
7. |
卢强,丁洋,刘赟哲,唐仕英,郭志昀,王占江. 黏弹性固体中地下爆炸辐射地震波能量的演化. 爆炸与冲击. 2021(09): 54-62 .
![]() | |
8. |
宋金,陈运泰,张勇. 2013年岷漳地震和2014年景谷地震的能矩比对比研究. 地球物理学报. 2020(09): 3324-3337 .
![]() | |
9. |
王婷,延军平,李双双,万佳,张玉凤. 帕米尔高原Mw≥6.6级地震时间韵律特征. 高原地震. 2020(04): 6-16 .
![]() | |
10. |
刘瑞丰,李赞,张玲,刘晓锋,王俊,李恩来,刘芳. 爆炸当量估算的初步研究. 地震地磁观测与研究. 2019(04): 1-7 .
![]() |