Zeng X Y,Qiu Q,Jiang C,Zhou S H,Liang M,Xiong C. 2024. A convolutional neural network-based model for identifying earthquakes and blasting:Preliminary application in Guangdong region. Acta Seismologica Sinica46(6):1002−1013. DOI: 10.11939/jass.20230163
Citation: Zeng X Y,Qiu Q,Jiang C,Zhou S H,Liang M,Xiong C. 2024. A convolutional neural network-based model for identifying earthquakes and blasting:Preliminary application in Guangdong region. Acta Seismologica Sinica46(6):1002−1013. DOI: 10.11939/jass.20230163

A convolutional neural network-based model for identifying earthquakes and blasting:Preliminary application in Guangdong region

More Information
  • Received Date: December 13, 2023
  • Revised Date: April 08, 2024
  • Accepted Date: April 10, 2024
  • Available Online: December 17, 2024
  • This paper proposes an efficient method for identifying artificial blasting waveforms based on the AlexNet convolutional neural network, which is designed earlier and still widely used today. This method directly uses event records as input data, which can simplify the data preprocessing, shorten the event determination time, and achieve a simple and fast effect. From the records of the Guangdong seismic network, this paper selects 312 artificial blasting events with ML>1.8 and 526 natural earthquake events with ML>1.4 that were manually analyzed and entered into the database. To achieve the best identification results, waveform within 30 km of the epicenter were selected, and after waveform preprocessing, such as trimming waveforms to a uniform length, waveform normalization, and removing abnormal information like calibration, square waves, sudden jumps, interference, and instrument faults, a total of 1840 valid waveforms were obtained. Among them, 1000 natural earthquake waveforms and 300 blasting waveforms were used to train the model, building an automatic blasting events classifier suitable for the Guangdong region. Additionally, this paper also studied the effect of changing the training set and validation set ratio during training and the training sizes on the accuracy. The results show that in this model, the accuracy reaches its optimum when the training set to validation set ratio is 8∶2, and when the number of training samples exceeds 600, the accuracy is higher than 95%. Finally, the well trained classifier was then tested by 540 waveforms from the Guangdong region, and it correctly identified 526 waveforms in less than 2 seconds, with an accuracy rate of 97.41%. Its precision, recall rate, and F1-score for natural earthquake events are all greater than 0.98, while its precision, recall rate, and F1-score of artificial blasting events are all greater than 0.90. All of these indicate that, on one hand, the size of the training sample needed for the model to achieve high accuracy is small, showing that this method is quite efficient. On the other hand, the AlexNet convolutional neural network model demonstrates higher adaptability to natural earthquake events with more training samples. With the input of more blasting events in the future, the model's recognition rate of artificial blastings will be further improved.

    In conclusion, the AlexNet convolutional neural network can efficiently and accurately distinguish between natural earthquakes and artificial blasting in the Guangdong region. It can meet the requirement of timely and accurately removing artificial blasting events from the natural earthquake catalog to ensure the completeness and accuracy of the catalog, which is beneficial for regional strong earthquake prediction and seismic hazard assessment. Compared to manual work, this approach is more stable, accurate, and efficient. So the blasting classifier based on this model will save a significant amount of time and manpower for the work of Guangdong seismic network and provide support for the results of post-earthquake emergency response. Future research will focus on the practical application of this classifer, based on the data recorded by the Guangdong seismic network, continuously improving the accuracy and robustness of the classifer through constant testing, and applying it to practical earthquake early warning and daily seismic monitoring.

  • 陈润航,黄汉明,柴慧敏. 2018. 地震和爆破事件源波形信号的卷积神经网络分类研究[J]. 地球物理学进展,33(4):1331–1338. doi: 10.6038/pg2018BB0326
    Chen R H,Huang H M,Chai H M. 2018. Study on the discrimination of seismic waveform signals between earthquake and explosion events by convolutional neural network[J]. Progress in Geophysics,33(4):1331–1338 (in Chinese).
    黄汉明,边银菊,卢世军,蒋正锋,李锐. 2010. 天然地震与人工爆破的波形小波特征研究[J]. 地震学报,32(3):270–276. doi: 10.3969/j.issn.0253-3782.2010.03.002
    Huang H M,Bian Y J,Lu S J,Jiang Z F,Li R. 2010. A wavelet feature research on seismic waveforms of earthquakes and explosions[J]. Acta Seismologica Sinica,32(3):270–276 (in Chinese).
    隗永刚,杨千里,王婷婷,蒋长胜,边银菊. 2019. 基于深度学习残差网络模型的地震和爆破识别[J]. 地震学报,41(5):646–657. doi: 10.11939/jass.20190030
    Wei Y G,Yang Q L,Wang T T,Jiang C S,Bian Y J. 2019. Earthquake and explosion identification based on deep learning residual network model[J]. Acta Seismologica Sinica,41(5):646–657 (in Chinese).
    赵明,陈石,Yuen D. 2019. 基于深度学习卷积神经网络的地震波形自动分类与识别[J]. 地球物理学报,62(1):374–382. doi: 10.6038/cjg2019M0151
    Zhao M,Chen S,Yuen D. 2019. Waveform classification and seismic recognition by convolution neural network[J]. Chinese Journal of Geophysics,62(1):374–382 (in Chinese).
    赵永,刘卫红,高艳玲. 1995. 北京地区地震、爆破和矿震的记录图识别[J]. 地震地磁观测与研究,16(4):48–54.
    Zhao Y,Liu W H,Gao Y L. 1995. Distinguishing earthquake,explosion and mine earthquake in Beijing area[J]. Seismological and Geomagnetic Observation and Research,16(4):48–54 (in Chinese).
    郑周,林彬华,金星,韦永祥,丁炳火,陈辉. 2023. 基于卷积神经网络的地震波形智能识别研究[J]. 世界地震工程,39(2):148–157.
    Zheng Z,Lin B H,Jin X,Wei Y X,Ding B H,Chen H. 2023. Intelligent recognition of seismic waveform based on convolutional neural network[J]. World Earthquake Engineering,39(2):148–157 (in Chinese).
    周少辉,蒋海昆,李健,曲均浩,郑晨晨,李亚军,张志慧,郭宗斌. 2021. 基于深度学习的地震事件分类识别:以山东地震台网记录为例[J]. 地震地质,43(3):663–676. doi: 10.3969/j.issn.0253-4967.2021.03.012
    Zhou S H,Jiang H K,Li J,Qu J H,Zheng C C,Li Y J,Zhang Z H,Guo Z B. 2021. Research on identification of seismic events based on deep learning:Taking the records of Shandong seismic network as an example[J]. Seismology and Geology,43(3):663–676 (in Chinese).
    Bengio Y,Courville A,Vincent P. 2013. Representation learning:A review and new perspectives[J]. IEEE Trans Pattern Anal Mach Intell,35(8):1798–1828. doi: 10.1109/TPAMI.2013.50
    Chen Y K,Zhang G Y,Bai M,Zu S H,Guan Z,Zhang M. 2019. Automatic waveform classification and arrival picking based on convolutional neural network[J]. Earth Space Sci,6(7):1244–1261. doi: 10.1029/2018EA000466
    Gao H,Zhang J. 2019. Simultaneous denoising and interpolation of seismic data via the deep learning method[J]. Earthquake Research Advances,33(1):37–51.
    Glorot X,Bengio Y. 2010. Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. Sardinia:JMLR:249−256.
    Han J,Moraga C. 1995. The influence of the sigmoid function parameters on the speed of backpropagation learning[C]//International Workshop on Artificial Neural Networks. Malaga-Torremolinos:Springer:195−201.
    Hinton G E,Osindero S,Teh Y W. 2006. A fast learning algorithm for deep belief nets[J]. Neural Comput,18(7):1527–1554. doi: 10.1162/neco.2006.18.7.1527
    Krizhevsky A,Sutskever I,Hinton G. 2012. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe Nevada:Curran Associates Inc:1097−1105.
    Kuang W H,Yuan C C,Zhang J. 2021. Real-time determination of earthquake focal mechanism via deep learning[J]. Nat Commun,12(1):1432. doi: 10.1038/s41467-021-21670-x
    LeCun Y,Bengio Y,Hinton G. 2015. Deep learning[J]. Nature,521(7553):436–444. doi: 10.1038/nature14539
    Li Z F,Meier M A,Hauksson E,Zhan Z W,Andrews J. 2018. Machine learning seismic wave discrimination:Application to earthquake early warning[J]. Geophys Res Lett,45(10):4773–4779. doi: 10.1029/2018GL077870
    Linville L,Pankow K,Draelos T. 2019. Deep learning models augment analyst decisions for event discrimination[J]. Geophys Res Lett,46(7):3643–3651. doi: 10.1029/2018GL081119
    Men-Andrin M,Ross Z E,Anshul R,Ashwin B,Suraj N,Peter K,Li Z F,Jennifer A,Egill H,Yue Y S. 2019. Reliable real-time seismic signal/noise discrimination with machine learning[J]. J Geophys Res:Solid Earth,124(1):788–800. doi: 10.1029/2018JB016661
    Nair V,Hinton G E. 2010. Rectified linear units improve restricted Boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning. Haifa,Israel:Omnipress:807−814.
    Zhang H,Ma C C,Pazzi V,Li T B,Casagli N. 2020a. Deep convolutional neural network for microseismic signal detection and classification[J]. Pure Appl Geophys,177(12):5781–5797. doi: 10.1007/s00024-020-02617-7
    Zhang G Y,Lin C Y,Chen Y K. 2020b. Convolutional neural networks for microseismic waveform classification and arrival picking[J]. Geophysics,85(4):WA227–WA240. doi: 10.1190/geo2019-0267.1
    Zhang Q S,Zhang W,Wu X M,Zhang J,Kuang W H,Si X. 2022. Deep learning for efficient microseismic location using source migration-based imaging[J]. J Geophys Res:Solid Earth,127(3):e2021JB022649. doi: 10.1029/2021JB022649
    Zhou Y T,Chellappa R. 1988. Computation of optical flow using a neural network[C]//IEEE 1988 International Conference on Neural Networks. San Diego,CA:IEEE: 2 :71−78.
  • Related Articles

  • Cited by

    Periodical cited type(17)

    1. 吴丽慧,廖武林,黎金玲,包萨日娜. 黄石市地震台背景噪声特征分析. 地震工程学报. 2025(01): 152-159 .
    2. 林丽萍,王宇航,吴朋,谌亮. 2022-06-01芦山M_S6.1地震流动地震台网部署及余震序列监测. 大地测量与地球动力学. 2024(02): 195-201 .
    3. 包文超,胡玮,申影,郭晔,甄齐,王西. 内蒙古基准站噪声特征与监测能力. 华北地震科学. 2024(02): 94-101 .
    4. 安全,韩晓明,包文超,翟浩,赵铁锁,赵星. 内蒙古地区强震动台站背景噪声与数据质量分析. 地震学报. 2024(03): 490-501 . 本站查看
    5. 包文超,赵铁锁,郭雷,郭晔,王西. 额肯呼都格地震台地震观测波形干扰分析. 地震地磁观测与研究. 2024(03): 94-99 .
    6. 李文超,殷锴,刘炜,陈永新,王天琦,张子俊. 大同、朔州地震预警基准、基本站运行质量分析. 山西地震. 2024(03): 28-34 .
    7. 张小艳,安全,熊峰,苏亚梅,赵星. 内蒙古VP型垂直摆倾斜仪背景噪声特征分析. 大地测量与地球动力学. 2024(11): 1193-1198 .
    8. 唐浩,徐金银,何秋菊,马瑞,李青梅. 宁夏区域地震观测背景噪声特征. 大地测量与地球动力学. 2024(11): 1199-1206 .
    9. 白玛桑布,单增曲珠,次旦卓玛,洛桑罗布,普穷,格桑旦珍. 观测环境变化对日喀则地震台观测质量的影响. 地震地磁观测与研究. 2024(05): 67-73 .
    10. 方伟,韦进,黄雅,辜有启,胡敏章,刘高川,崔庆谷. 重力建站测试的影响因素研究——以云南燕子岩站为例. 地球物理学进展. 2024(06): 2126-2136 .
    11. 丁大业,董春丽,宫卓宏,陈永新,吕飞亚. 山西地震预警新建基准站数据质量评估. 山西地震. 2023(02): 15-22 .
    12. 文金龙,包文超,王西,范东海,甄齐,李男. 锡林浩特地震台台基背景噪声分析. 地震地磁观测与研究. 2023(01): 83-91 .
    13. 邓明文,许鑫,李金. 乌鲁木齐及周边地区新冠疫情前后背景噪声分析. 华南地震. 2023(03): 7-18 .
    14. 尹康达,李小军,张晓刚,丁成. 台基噪声功率谱估计中的Welch参数选择. 地震地磁观测与研究. 2023(04): 63-67 .
    15. 文金龙,贾彦杰,包文超,白少奇,郭晔. 锡林郭勒盟三个测震台站台基背景噪声对比分析. 河南科技. 2023(21): 99-103 .
    16. 曾均,赵寅甫,胡耀. 不同型号地震烈度仪振动测试对比分析. 四川地震. 2023(04): 13-18 .
    17. 刘艺璇,周元泽. 2013年芦山M_S7.0地震震源区背景噪声源特征分析. 中国地震. 2022(04): 721-736 .

    Other cited types(0)

Catalog

    Article views (130) PDF downloads (47) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return