Hu J T,Wei Z G,Xie J,Sheng M H,Jin C,Fan X T,Liu Y W,Chen C. 2025. The seismogenic environment and focal mechanisms of moderate-strong earthquakes in Hubei Province. Acta Seismologica Sinica47(3):374−389. DOI: 10.11939/jass.20240031
Citation: Hu J T,Wei Z G,Xie J,Sheng M H,Jin C,Fan X T,Liu Y W,Chen C. 2025. The seismogenic environment and focal mechanisms of moderate-strong earthquakes in Hubei Province. Acta Seismologica Sinica47(3):374−389. DOI: 10.11939/jass.20240031

The seismogenic environment and focal mechanisms of moderate-strong earthquakes in Hubei Province

More Information
  • Received Date: March 24, 2024
  • Revised Date: August 01, 2024
  • Research on earthquake trends, investigations of seismo-geological characteristics, and studies of seismic activity in Hubei Province shows that Hubei and its neighboring regions exhibit a background conducive of moderate to strong earthquakes. In the Yangtze craton of Hubei Province, which is structurally stable and characterized by low heat flow and strong rigidity, moderate to strong earthquakes occurred one after another in recent years. The seismogenic background and seismogenic structure have drawn considerable attention, but systematic research in this regard remains relatively scarce.

    In this paper we uses CAP (cut and paste) technology to invert the source parameters of the 2018 Zigui MS4.5 earthquake and the 2006 Suizhou ML4.7 earthquake. And then we have employed a joint method of receiver function and surface wave phase velocity dispersion curve to reveal the shear wave velocity of the crust at the epicenter of three earthquakes with M≥6 (documented since the start of earthquake records) and six earthquakes with M4.5−6.0 (recorded following the implementation of seismometer observations in 1958) in Hubei Province. The results indicate that for the 2006 Suizhou ML4.7 earthquake, the strike, dip angle, and rake were 126°, 78° and −30°, respectively, the strike direction was NW, and the focal depth was 8 km. The seismogenic fault was related to the northwest trending Xiangfan-Guangji fault zone and its subfaults (Zaoshi fault or Qianbei fault). For the 2018 Zigui MS4.5 earthquake, the strike, dip angle, and rake were 61°, 58° and 173°, the strike was NNE and NE, and the focal depth is ML4.75 km. The seismogenic fault was related to the Xinhua-Longwangchong fault zone and Gaoqiao fault zone. Based on the source mechanism solutions of the 2013 Badong MS5.1, 2014 Zigui MS4.6, and 2019 Yingcheng MS4.9 earthquakes obtained by previous researches using CAP and other methods, as well as the crustal S-wave velocity obtained by the joint inversion of receiver function and surface wave in this paper, it was found that the seismogenic faults of medium and strong earthquakes are mainly of strike-slip, which is corresponding to the distribution of fault structures. For the 2013 Badong MS5.1 earthquake and the 2014 Zigui MS4.6 earthquake, their S-wave velocities vary from low to high, with velocity percentage changes of 4% and 7%, respectively. In contrast, for the 2018 Zigui MS4.5, 2006 Suizhou ML4.7, and 2019 Yingcheng MS4.9 earthquakes, the S-wave velocities vary from high to low, with velocity variations percentage of −4%, −1%, and −2%, respectively. The five moderate-strong earthquakes, for which the focal mechanism solutions were obtained, occurred in vertical high-low velocity transition zones with different velocity characteristics. Additionally the four moderate to strong earthquakes with unknown focal depths also exhibited significant vertical high-low velocity interlayer variations within the traditional depth range of the seismogenic layer. The risk of moderate to strong earthquakes in Hubei Province has increased. Seismic activity is significantly higher in the western part of the province compared to the eastern part, with a concentration in Zigui and its adjacent areas. Small and medium-sized earthquakes are also clustered in the source area and its adjacent areas of Zigui, which needs to be monitored specially. The paper suggests that the 2006 Suizhou ML4.7, the 2014 Zigui MS4.6, and the 2019 Yingcheng MS4.9 earthquakes may be structural earthquakes, which are speculated to be related to the reverse compression of the northwest Yangtze Plate, the relative compression and impact of the southwest Indian Plate, and the activation of preexisting faults under the dual effects of subduction of the Pacific Plate and rock asthenosphere system. The 2013 Badong MS5.1 earthquake and the 2018 Zigui MS4.5 earthquake occurred in the vicinity of the Three Gorges Reservoir, with shallow epicentral depth. It is speculated that the reservoir’s water impoundment and subsequent downward infiltration altered the local seismic environment, potentially rendering these events reservoir-triggered earthquakes.

    In summary, it is necessary to persistently focus on and strengthen the research on earthquake trends, geological characteristics of earthquakes, and monitoring of earthquake activities in Hubei Province. This is crucial for averting the earthquake-related disasters risk and reducing the huge losses caused by earthquakes. The study of the seismogenic environment and focal mechanism of moderate to strong earthquakes can provide reference for understanding earthquake characteristics and earthquake prevention and disaster reduction in Hubei Province.

  • 邓起东,张培震,冉勇康,杨晓平,闵伟,陈立春. 2003. 中国活动构造与地震活动[J]. 地学前缘,10(增刊):66–73.
    Deng Q D,Zhang P Z,Ran Y K,Yang X P,Min W,Chen L C. 2003. Active tectonics and earthquake activities in China[J]. Earth Science Frontiers,10(S1):66–73 (in Chinese).
    邓世广. 2022. 中国大陆中强地震复发间隔的概率分布研究[J]. 地震科学进展,52(4):161–167.
    Deng S G. 2022. Distribution research of recurrence interval for moderate-strong earthquake in the mainland of China[J]. Progress in Earthquake Sciences,52(4):161–167 (in Chinese).
    甘家思,袁金荣,申重阳. 2000. 神农架断块西缘北北西向板桥断裂带新活动调查研究[J]. 地壳形变与地震,20(1):79–85.
    Gan J S,Yuan J R,Shen C Y. 2000. Investigation of neotectonic activity of NNW-strike Banqiao fault zone in western boundary of the Shennongjia block[J]. Journal of Geodesy and Geodynamics,20(1):79–85 (in Chinese).
    高红亮,姚运生,张丽芬. 2015. 2013年湖北巴东MS5.1地震成因机制探讨[J]. 防灾科技学院学报,17(3):17–23. doi: 10.3969/j.issn.1673-8047.2015.03.003
    Gao H L,Yao Y S,Zhang L F. 2015. Focal mechanism of Badong MS5.1 earthquake in 2013[J]. Journal of Institute of Disaster Prevention,17(3):17–23 (in Chinese).
    何钰铭,彭正华,石长柏,谢迪,赵振洋,黄宁. 2024. 湖北省三峡库区砂泥岩互层岩体劣化特征与劣化机理分析[J]. 中国资源综合利用,42(1):34–37. doi: 10.3969/j.issn.1008-9500.2024.010
    He Y M,Peng Z H,Shi C B,Xie D,Zhao Z Y,Huang N. 2024. Analysis of the deterioration characteristics and mechanism of sandstone-mudstone interbedded rock mass in the Three Gorges Reservoir area of Hubei Province[J]. China Resources Comprehensive Utilization,42(1):34–37 (in Chinese).
    胡家富,朱雄关,夏静瑜,陈赟. 2005. 利用面波和接收函数联合反演滇西地区壳幔速度结构[J]. 地球物理学报,48(5):1069–1076. doi: 10.3321/j.issn:0001-5733.2005.05.013
    Hu J F,Zhu X G,Xia J Y,Chen Y. 2005. Using surface wave and receiver function to jointly inverse the crust-mantle velocity structure in the West Yunnan area[J]. Chinese Journal of Geophysics,48(5):1069–1076 (in Chinese). doi: 10.1002/cjg2.750
    冷崇标,张辉,曾智辉,安一凡. 2023. 湖北及周边地区地震活动分形特征与R/S分析[J]. 科学技术创新,(14):89–92. doi: 10.3969/j.issn.1673-1328.2023.14.023
    Leng C B,Zhang H,Zeng Z H,An Y F. 2023. Fractal characteristics and R/S analysis of seismic activity in Hubei and its surrounding areas[J]. Scientific and Technological Innovation,(14):89–92 (in Chinese).
    李峰,李垠,薛军蓉,陈俊华. 2007. 湖北随州ML4.7地震序列基础资料分析[J]. 大地测量与地球动力学,27(增刊):56–61.
    Li F,Li Y,Xue J R,Chen J H. 2007. Analysis on basic data of ML4.7 earthquake sequence in Suizhou,Hubei[J]. Journal of Geodesy and Geodynamics,27(S1):56–61 (in Chinese).
    梁姗姗,徐志国,黄小宁,张广伟,邹立晔,周元泽. 2024. 新疆伽师地区地壳三维速度结构及中强震震源机制揭示的区域孕震环境[J]. 地球科学,49(2):451–468.
    Liang S S,Xu Z G,Huang X N,Zhang G W,Zou L Y,Zhou Y Z. 2024. Regional seismogenic environment revealed by the 3D crustal velocity structure and focal mechanism of moderate and strong earthquakes in Jiashi area,Xinjiang,China[J]. Earth Science,49(2):451–468 (in Chinese).
    刘冠男,柳存喜,王志. 2021. 青藏高原东南缘深部多参数属性变化与中强震孕育响应关系[J]. 地球物理学报,64(11):3948–3969. doi: 10.6038/cjg2021P0061
    Liu G N,Liu C X,Wang Z. 2021. The response of moderate-large earthquake initiations to multi-parameter variations of deep structures in southeastern Tibetan Plateau[J]. Chinese Journal of Geophysics,64(11):3948–3969 (in Chinese).
    邱瑞照,邓晋福,周肃,李金发,肖庆辉,吴宗絮,刘翠. 2004. 华北地区岩石圈类型:地质与地球物理证据[J]. 中国科学:D辑,34(8):698–711.
    Qiu R Z,Deng J F,Zhou S,Li J F,Xiao Q H,Wu Z X,Liu C. 2005. Lithosphere types in North China:Evidence from geology and geophysics[J]. Science in China:Series D,48(11):1809–1827. doi: 10.1360/03yd0380
    申重阳,李安然,王清云,张飞飞. 1994. 麻城1932年6.0级地震区地球物理场与深部环境研究[J]. 地壳形变与地震,14(3):65–73.
    Sheng C Y,Li A R,Wang Q Y,Zhang F F. 1994. Study on geophysical field and deep seismogenic environment of the Macheng earthquake (MS=6.0) in 1932[J]. Crustal Deformation and Earthquake,14(3):65–73 (in Chinese).
    王力伟,吴国瑞,黄柳芳. 2018. CAP方法反演新丰江锡场地区ML4.0级以上地震震源机制解[J]. 华南地震,38(3):1–8.
    Wang L W,Wu G R,Huang L F. 2018. Focal mechanism inversion of ML≥4.0 earthquakes in Xichang,Xinfengjiang reservoir by CAP method[J]. South China Journal of Seismology,38(3):1–8 (in Chinese).
    王秋良,张丽芬,廖武林,李井冈. 2016. 2014年3月湖北省秭归县M4.2、M4.5地震成因分析[J]. 地震地质,38(1):121–130. doi: 10.3969/j.issn.0253-4967.2016.01.009
    Wang Q L,Zhang L F,Liao W L,Li J G. 2016. Research on genesis of M4.2 and M4.5 earthquake sequences in March 2014 in Zigui county,Hubei Province[J]. Seismology and Geology,38(1):121–130 (in Chinese).
    王未来,吴建平,房立华. 2009. 唐海—商都地震台阵剖面下方的地壳上地幔S波速度结构研究[J]. 地球物理学报,52(1):81–89.
    Wang W L,Wu J P,Fang L H. 2009. Crust and upper mantle S-wave velocity structure beneath Tanghai-Shangdu seismic array profile[J]. Chinese Journal of Geophysics,52(1):81–89 (in Chinese).
    王小亚,朱文耀,符养,游新兆,王琪,程宗颐,任金卫. 2002. GPS监测的中国及其周边现时地壳形变[J]. 地球物理学报,45(2):198–209. doi: 10.3321/j.issn:0001-5733.2002.02.006
    Wang X Y,Zhu W Y,Fu Y,You X Z,Wang Q,Cheng Z Y,Ren J W. 2002. Present-time crustal deformation in China and its surrounding regions by GPS[J]. Chinese Journal of Geophysics,45(2):198–209 (in Chinese).
    翁骋,李俊超. 2017. 利用sPL震相测定湖北秭归MS4.7地震震源深度及研究方法展望[J]. 科学技术创新,(33):61–62. doi: 10.3969/j.issn.1673-1328.2017.33.037
    Weng C,Li J C. 2017. Outlook on using sPL seismic phase to determine the depth of the MS4.7 earthquake source in Zigui,Hubei and research methods[J]. Scientific and Technological Innovation,(33):61–62 (in Chinese).
    吴海波,姚运生,薛军蓉. 2009. 汶川地震对湖北地震活动趋势的影响[J]. 大地测量与地球动力学,29(增刊):59–65.
    Wu H B,Yao Y S,Xue J R. 2009. Effect of Wenchuan earthquake on seismic activity in Hubei[J]. Journal of Geodesy and Geodynamics,29(S1):59–65 (in Chinese).
    吴海波,申学林,王杰,赵凌云,陈俊华. 2018. 三峡库区上地壳三维速度结构的双差层析成像研究[J]. 地球物理学报,61(7):2802–2814. doi: 10.6038/cjg2018L0345
    Wu H B,Shen X L,Wang J,Zhao L Y,Chen J H. 2018. Three-dimensional velocity structure of upper crust in the Three Gorges Reservoir area derived from double-difference tomography[J]. Chinese Journal of Geophysics,61(7):2802–2814 (in Chinese).
    吴海波,王杰,邹正波,陈俊华. 2021. 三峡库区秭归与巴东交界MS4.0地震矩张量及应力环境研究[J]. 地球物理学报,64(2):484–497. doi: 10.6038/cjg2021N0281
    Wu H B,Wang J,Zou Z B,Chen J H. 2021. Moment tensors and the stress environment of MS4.0 earthquakes in the junction area between Zigui and Badong,Three Gorges Reservoir[J]. Chinese Journal of Geophysics,64(2):484–497 (in Chinese).
    吴庆举,曾融生. 1998. 用宽频带远震接收函数研究青藏高原的地壳结构[J]. 地球物理学报,41(5):669–679. doi: 10.3321/j.issn:0001-5733.1998.05.010
    Wu Q J,Zeng R S. 1998. The crustal structure of Qinghai-Xizang Plateau inferred from broadband teleseismic waveform[J]. Acta Geophysica Sinica,41(5):669–679 (in Chinese).
    谢祖军,郑勇,倪四道,熊熊,王行舟,张炳. 2012. 2011年1月19日安庆ML4.8地震的震源机制解和深度研究[J]. 地球物理学报,55(5):1624–1634. doi: 10.6038/j.issn.0001-5733.2012.05.020
    Xie Z J,Zheng Y,Ni S D,Xiong X,Wang X Z,Zhang B. 2012. Focal mechanism and focal depth of the 19 January 2011 Anqing earthquake[J]. Chinese Journal of Geophysics,55(5):1624–1634 (in Chinese).
    徐嘉炜. 1995. 论走滑断层作用的几个主要问题[J]. 地学前缘,2(1/2):125–136. doi: 10.3321/j.issn:1005-2321.1995.01.015
    Xu J W. 1995. Some major problems on strike-slip faulting[J]. Earth Science Frontiers,2(1/2):125–136 (in Chinese).
    严尊国. 2002. 2002年湖北省地震趋势估计[C]//2002年湖北省减轻自然灾害白皮书:湖北省2002年重大自然灾害合趋势分析会商会论文集. 武汉:湖北省灾害防御协会:36−39.
    Yan Z G. 2002. Estimation of earthquake trends in Hubei Province in 2002[C]//2002 Hubei Province White Paper on Reducing Natural Disasters:Collected Papers of the Chamber of Commerce for the Analysis of Major Natural Disasters in Hubei Province in 2002. Wuhan:Hubei Provincial Disaster Prevention Association:36−39 (in Chinese).
    易桂喜,龙锋,梁明剑,张会平,赵敏,叶有清,张致伟,祁玉萍,王思维,宫悦,乔惠珍,汪智,邱桂兰,苏金蓉. 2017. 2017年8月8日九寨沟M7.0地震及余震震源机制解与发震构造分析[J]. 地球物理学报,60(10):4083–4097. doi: 10.6038/cjg20171033
    Yi G X,Long F,Liang M J,Zhang H P,Zhao M,Ye Y Q,Zhang Z W,Qi Y P,Wang S W,Gong Y,Qiao H Z,Wang Z,Qiu G L,Su J R. 2017. Focal mechanism solutions and seismogenic structure of the 8 August 2017 M7.0 Jiuzhaigou earthquake and its aftershocks,northern Sichuan[J]. Chinese Journal of Geophysics,60(10):4083–4097 (in Chinese).
    詹艳,梁明剑,孙翔宇,黄飞鹏,赵凌强,宫悦,韩静,李陈侠,张培震,张会平. 2021. 2021年5月22日青海玛多MS7.4地震深部环境及发震构造模式[J]. 地球物理学报,64(7):2232–2252. doi: 10.6038/cjg2021O0521
    Zhan Y,Liang M J,Sun X Y,Huang F P,Zhao L Q,Gong Y,Han J,Li C X,Zhang P Z,Zhang H P. 2021. Deep structure and seismogenic pattern of the 2021.5.22 Madoi (Qinghai) MS7.4 earthquake[J]. Chinese Journal of Geophysics,64(7):2232-2252 (in Chinese).
    张杰,黄禄渊,贾晋,徐鑫,刘卓岩. 2017. 关于水库“触发地震”和“诱发地震”的思考与探讨[G]//地壳构造与地壳应力文集. 北京:中国地震局地壳应力研究所:74–82.
    Zhang J,Huang L Y,Jia J,Xu X,Liu Z Y. 2017. Thinking and discussion about reservoir “triggered seismicity” and “induced seismicity”[G]//Bulletin of the Institute of Crustal Dynamics. Beijing:Institute of Crustal Dynamics,China Earthquake Administration:74−82 (in Chinese).
    张丽芬,姚运生,廖武林,李井冈,王秋良,王墩. 2011. 湖北地区上地幔各向异性及其动力学意义[J]. 地球物理学报,54(1):35–43. doi: 10.3969/j.issn.0001-5733.2011.01.005
    Zhang L F,Yao Y S,Liao W L,Li J G,Wang Q L,Wang D. 2011. Research on the upper mantle seismic anisotropy beneath Hubei and its geodynamic implication[J]. Chinese Journal of Geophysics,54(1):35–43 (in Chinese). doi: 10.1002/cjg2.1584
    赵凌云,丁文秀,周舟,周本伟,何凯,申学林,魏贵春. 2022. 基于CAP方法的2019年湖北应城MS 4.9地震震源机制与发震构造研究[J]. 四川地震,(3):20–23.
    Zhao L Y,Ding W X,Zhou Z,Zhou B W,He K,Shen X L,Wei G C. 2022. Focal mechanism solution and seismogenic structure of the MS4.9 Yingcheng earthquake in 2019 from the CAP method[J]. Earthquake Research in Sichuan,(3):20–23 (in Chinese).
    郑秀芬,欧阳飚,张东宁,姚志祥,梁建宏,郑洁. 2009. “国家数字测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑[J]. 地球物理学报,52(5):1412–1417. doi: 10.3969/j.issn.0001-5733.2009.05.031
    Zheng X F,Ouyang B,Zhang D N,Yao Z X,Liang J H,Zheng J. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake[J]. Chinese Journal of Geophysics,52(5):1412–1417 (in Chinese).
    郑勇,马宏生,吕坚,倪四道,李迎春,韦生吉. 2009. 汶川地震强余震(MS≥5.6)的震源机制解及其与发震构造的关系[J]. 中国科学:D辑,39(4):413–426.
    Zheng Y,Ma H S,Lü J,Ni S D,Li Y C,Wei S J. 2009. Source mechanism of strong aftershocks (MS≥5.6) of the 2008/05/12 Wenchuan earthquake and the implication for seismotectonics[J]. Science in China:Series D,52(6):739–753. doi: 10.1007/s11430-009-0074-3
    郑勇,葛粲,谢祖军,Yang Y J,熊熊,许厚泽. 2013. 芦山与汶川地震震区地壳上地幔结构及深部孕震环境[J]. 中国科学:地球科学,43(6):1027–1037.
    Zheng Y,Ge C,Xie Z J,Yang Y J,Xiong X,Hsu H T. 2013. Crustal and upper mantle structure and the deep seismogenic environment in the source regions of the Lushan earthquake and the Wenchuan earthquake[J]. Science China Earth Sciences,56(7):1158–1168. doi: 10.1007/s11430-013-4641-2
    Ammon C J,Randall G E,Zandt G. 1990. On the nonuniqueness of receiver function inversions[J]. J Geophys Res:Solid Earth,95(B10):15303–15318. doi: 10.1029/JB095iB10p15303
    Chen L. 2010. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications[J]. Lithos,120(1/2):96–115.
    Cheng S H,Xiao X,Wu J P,Wang W L,Sun L,Wang X X,Wen L X. 2022. Crustal thickness and vP/vS variation beneath continental China revealed by receiver function analysis[J]. Geophys J Int,228(3):1731–1749.
    He R Z,Shang X F,Yu C Q,Zhang H J,van der Hilst R D. 2014. A unified map of Moho depth and vP/vS ratio of continental China by receiver function analysis[J]. Geophys J Int,199(3):1910–1918. doi: 10.1093/gji/ggu365
    Herrmann R B. 2013. Computer programs in seismology:An evolving tool for instruction and research[J]. Seismol Res Lett,84(6):1081–1088. doi: 10.1785/0220110096
    Huang R,Zhu L P,Encarnacion J,Xu Y X,Tang C C,Luo S,Jiang X H. 2018. Seismic and geologic evidence of water-induced earthquakes in the Three Gorges Reservoir region of China[J]. Geophys Res Lett,45(12):5929–5936. doi: 10.1029/2018GL077639
    Julià J,Ammon C J,Herrmann R B,Correig A M. 2000. Joint inversion of receiver function and surface wave dispersion observations[J]. Geophys J Int,143(1):99–112. doi: 10.1046/j.1365-246x.2000.00217.x
    Kennett B L N,Engdahl E R,Buland R. 1995. Constraints on seismic velocities in the Earth from traveltimes[J]. Geophys J Int,122(1):108–124. doi: 10.1111/j.1365-246X.1995.tb03540.x
    Langston C A. 1977. Corvallis,oregon,crustal and upper mantle receiver structure from teleseismic P and S waves[J]. Bull Seismol Soc Am,67(3):713–724. doi: 10.1785/BSSA0670030713
    Laske G,Ma Z T,Masters G,Pasyanos M. 2013. A new global crustal model at 1×1 degrees [EB/OL]. [2024-02-12]. https://igppweb.ucsd.edu/~gabi/crust1.html.
    Li L L,Huang X L,Yao H J,Miao P,Wang X L,Bao Z W,Ni H Y,Li C,Yang Y,Luo S,Hu S Q,Yang Y Y. 2020. Shallow shear wave velocity structure from ambient noise tomography in Hefei city and its implication for urban sedimentary environment[J]. Chinese Journal of Geophysics,63(9):3307–3323.
    Li S L,Mooney W D,Fan J C. 2006. Crustal structure of mainland China from deep seismic sounding data[J]. Tectonophysics,420(1/2):239–252.
    Liu Q Y,van der Hilst R D,Li Y,Yao H J,Chen J H,Guo B,Qi S H,Wang J,Huang H,Li S C. 2014. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults[J]. Nat Geosci,7(5):361–365. doi: 10.1038/ngeo2130
    Molnar P,Tapponnier P. 1975. Cenozoic tectonics of Asia:Effects of a continental collision:Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science,189(4201):419–426. doi: 10.1126/science.189.4201.419
    Shapiro N M,Campillo M. 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J]. Geophys Res Lett,31(7):L07614.
    Shen W S,Ritzwoller M H,Kang D,Kim Y,Lin F C,Ning J Y,Wang W T,Zheng Y,Zhou L Q. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophys J Int,206(2):954–979. doi: 10.1093/gji/ggw175
    Tape C,West M,Silwal V,Ruppert N. 2013. Earthquake nucleation and triggering on an optimally oriented fault[J]. Earth Planet Sci Lett,363:231–241. doi: 10.1016/j.jpgl.2012.11.060
    Wu Y,Gao Y. 2019. Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes[J]. Earth Planet Phys,3(5):425–434. doi: 10.26464/epp2019044
    Zhao L S,Helmberger D V. 1994. Source estimation from broadband regional seismograms[J]. Bull Seismol Soc Am,84(1):91–104.
    Zhu L P,Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms[J]. Bull Seismol Soc Am,86(5):1634–1641. doi: 10.1785/BSSA0860051634
    Zhu L P,Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophys J Int,148(3):619–627. doi: 10.1046/j.1365-246X.2002.01610.x
  • Related Articles

Catalog

    Article views (56) PDF downloads (15) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return