Xi Jun, Wan Xinlin, Zhou Chengguang, Du Yun, Xi Daoying. 2013: Attenuation and dispersion of saturated rocks in temperature and frequency domains. Acta Seismologica Sinica, 35(6): 914-922. DOI: 10.3969/j.issn.0253-3782.2013.06.014
Citation: Xi Jun, Wan Xinlin, Zhou Chengguang, Du Yun, Xi Daoying. 2013: Attenuation and dispersion of saturated rocks in temperature and frequency domains. Acta Seismologica Sinica, 35(6): 914-922. DOI: 10.3969/j.issn.0253-3782.2013.06.014

Attenuation and dispersion of saturated rocks in temperature and frequency domains

More Information
  • Received Date: June 21, 2012
  • Revised Date: September 01, 2013
  • Published Date: October 31, 2013
  • Experiments are performed by Metravib dynamic mechanical analyzer about the attenuation and dispersion of pump-oil and glycerol saturated Peng-shan sandstones with two kinds of porosities. The frequency and temperature of tests are natural earthquake. The results show: ① The attenuation peak of pump-oil saturated Pengshan sandstone appears to be thermo-activated relaxation. ② Young’s modulus and elastic wave velocity of saturated Pengshan sandstones reduce with porosity and temperature increasing, and rise with viscosity coefficient of saturated liquid and frequency increasing. ③ Frequency dispersion attenuates as temperature increases, enhances as frequency rises. The data provides the experiment foundation for theoretical research of seismic waves.
  • 杜赟 , 席道瑛, 徐松林, 易良坤. 2009. 多孔岩石波传播的热弛豫模型修正[J]. 地球物理学报, 52 (12): 3051-3060.
    葛瑞, 塔潘, 杰克, 德沃金(编著). 1998. 徐海滨戴建春(译). 2008. 岩石物理手册: 孔隙介质中地震分析工具[M]. 合肥: 中国科学技术大学出版社: 166-171.
    葛庭燧. 2000. 固体内耗理论基础-晶界弛豫与晶界结构[M].北京: 科学出版社: 29.
    席道瑛, 徐松林, 席军, 易良坤, 杜赟. 2011. 饱和砂岩的粘弹行为的实验研究[J]. 地球物理学报, 54 (9): 2302-2308.
    席道瑛, 周城光, 徐松林, 杜赟, 席军. 2012. 饱和砂岩滞弹性弛豫衰减机理的探索[J]. 地球物理学报, 55 (7): 2362-2370.
    Batzle M, Wang Z J. 1992. Seismic properties of pore fluids[J]. Geophysics, 57 (11): 1396-1408.
    Batzle M, Hofmann R, Han D H, Castagna J. 2001. Fluids and frequency dependent seismic velocity of rocks[J]. The Leading Edge, 20 (2): 168-171.
    Batzle M L, Han D H, Hofmann R. 2006. Fluid mobility and frequency-dependent seismic velocity: Direct measurements[J]. Geophysics, 71 (1): N1-N9, doi:10.1190/1.2159053.
    Dvorkin J, Nur A. 1993. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms[J]. Geophysics, 58 (4): 524-533.
    Gist G A. 1994a. Interpreting laboratory velocity measurements in partially gas-saturated rocks[J]. Geophysics, 59 (7): 1100-1109.
    Gist G A. 1994b. Fluid effect on velocity and attenuation in sandstone[J]. J Acoust Soc Am, 96 (2): 1158-1173.
    Kan T K, Batzle M L, Gaiser J E. 1983. Attenuation measured from VSP: Evidence of frequency-dependent Q[C]//Proceedings of the 53rd SEG Meeting. Las Vegas, USA: 589-590.
    Messner R. 1983. Attenuation of seismic waves in sediments[C]//Proceedings of the 11th World Petroleum Congress. London: 363-381.
    Pennington W D. 1997. Seismic petrophysics: An applied science for reservoir geophysics[J]. The Leading Edge, 16 (3): 241-246.
    Pride S R, Harris J M, Johnson D L, Mateeva A, Nihei K T, Nowack R L, Rector J W, Spetzler H, Wu R, Yamomoto T, Berryman J G, Fehler M. 2003. Permeability dependence of seismic amplitudes[J]. The Leading Edge, 22 (6): 518-525.
    Spencer J W. 1981. Stress relaxation at low frequencies in fluid-saturated rocks: Attenuation and modulus dispersion[J]. J Geophys Res, 86 (B3): 1803-1812.
    Xi D Y, Liu B, Liu W, Yi L K. 2000. The dependence relationship of relaxation attenuation on time and temperature of saturated rocks[J]. Chinese J Geophys, 43 (6): 873-880.
    Xi D Y, Liu B, Tian X Y. 2002. Anisotropy and nonlinear viscoelastic behavior of saturated rocks[J]. Chinese J Geophys, 45 (1): 101-111.
    Xi D Y, Liu X Y, Zhang C Y. 2007. The frequency (or time)-temperature equivalence of relaxation in saturated rocks[J]. Pure Appl Geophys, 164 (11): 2157-2173.
    Xi D Y, Xu S L, Du Y, Yi L K. 2011. Wave propagation analysis of porous rocks with thermal activated relaxation mechanism[J]. J Appl Geophys, 73 (3): 289-303.
  • Cited by

    Periodical cited type(5)

    1. 柳建新,Syed muzyan SHAHZAD,孙娅,Asim SHAHZAD,李川,Meryem FANIDI,Ishfaque MUHAMMAD. 基于接收函数的中国东南部区域深部成矿机制(英文). Transactions of Nonferrous Metals Society of China. 2022(01): 273-284 .
    2. 李海艳,蔡辉腾,金星,姚华建,李培,徐嘉隽,林琛,任丛荣. 利用远震P波接收函数研究中国福建地区地壳厚度和泊松比. 地球物理学报. 2021(03): 805-822 .
    3. 程先琼,蒋科植. 基于深度降噪自编码神经网络的中国大陆地壳厚度反演. 地震学报. 2021(01): 34-47+136 . 本站查看
    4. 韩如冰,李秋生,徐义贤,张洪双,陈昊,郎超,吴庆宇,王晓冉. 南岭—武夷交汇区的深部背景及地壳泊松比. 地球物理学报. 2019(07): 2477-2489 .
    5. 琚长辉,王伟,王祥春,高星. 基于波场分离的接收函数正演及偏移. 地球物理学进展. 2015(06): 2676-2682 .

    Other cited types(2)

Catalog

    Article views (535) PDF downloads (8) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return