Gao Yang, Pan Hua, Wang Suyun. 2014: Effect of parameters on near-fault ground-motion simulations for moderate-strong earthquakes by stochastic finite-fault method. Acta Seismologica Sinica, 36(4): 698-710. DOI: 10.3969/j.issn.0253-3782.2014.04.015
Citation: Gao Yang, Pan Hua, Wang Suyun. 2014: Effect of parameters on near-fault ground-motion simulations for moderate-strong earthquakes by stochastic finite-fault method. Acta Seismologica Sinica, 36(4): 698-710. DOI: 10.3969/j.issn.0253-3782.2014.04.015

Effect of parameters on near-fault ground-motion simulations for moderate-strong earthquakes by stochastic finite-fault method

More Information
  • Received Date: June 30, 2013
  • Revised Date: November 19, 2013
  • Published Date: June 30, 2014
  • This paper described stochastic finite-fault method and related improvements which have been widely used in simulating acceleration time histories. The improved method is more suitable for the simulation of moderate-strong earthquakes. And then we compared the time histories and average PSA (pseudo-acceleration response spectra) of near-fault moderate-strong earthquakes for different site azimuths so as to analyze parametric sensitivity quantitatively to near-fault ground-motion simulations for moderate-strong earthquakes using the revised program. The results show that PSA values are apparenly different at short period for different site azimuths, and stress drop is the most important model parameter, which controls response spectra at short period. In addition, the geometric-spreading coefficient has a significant impact on PSA. Therefore, in order to get more accurate simulations for the near-fault moderate-strong earthquakes we should focus on stress drop and geometric-spreading coefficient which have great influence on PSA values at short period when applying stochastic finite-fault method to the seismic safety evaluation of moderate earthquakes. And the distribution of dominating site azimuths is another factor which should also be considered in this situation.
  • 高阳 , 潘华, 汪素云. 2013. 中强地震近场强震动的随机有限断层模型参数影响研究[J]. 国际地震动态, (11): 45-46.

    Gao Y, Pan H, Wang S Y. 2013. Parameters sensitivity of stochastic finite-fault model for moderate earthquakes near-fault ground motions[J]. Recent Development in World Seismology, (11): 45-46 (in Chinese).
    李明, 谢礼立, 翟长海, 杨永强. 2009. 近断层地震动区域的划分[J]. 地震工程与工程振动, 29 (5): 20-25.

    Li M, Xie L L, Zhai C H, Yang Y Q. 2009. Scope division of near-fault ground motion[J]. Journal of Earthquake Engineering and Engineering Vibration, 29 (5): 20-25 (in Chinese).
    李启成, 景立平. 2009. 随机点源方法和随机有限断层方法模拟地震动的比较[J]. 世界地震工程, 25 (1): 6-11.

    Li Q C, Jing L P. 2009. The comparison between stochastic point-source method and stochastic finite-fault method[J]. World Earthquake Engineering, 25 (1): 6-11 (in Chinese).
    石玉成, 陈厚群, 李敏, 卢育霞. 2005. 随机有限断层法合成地震动的研究与应用[J]. 地震工程与工程振动, 25 (4): 18-23.

    Shi Y C, Chen H Q, Li M, Lu Y X. 2005. The study and application of stochastic finite faults method in ground motion synthesizing[J]. Journal of Earthquake Engineering and Engineering Vibration, 25 (4): 18-23 (in Chinese).
    孙晓丹, 陶夏新, 王国新, 刘陶钧. 2009. 地震动随机合成中与震源谱相关的动力学拐角频率[J]. 地震学报, 31 (5): 537-543.

    Sun X D, Tao X X, Wang G X, Liu T J. 2009. Dynamic corner frequency in source spectral model for stochastic synthesis of ground motion[J]. Acta Seismologica Sinica, 31 (5): 537-543 (in Chinese).
    陶夏新, 陈富, 孙晓丹. 2012. 强地震动随机合成中震源谱模型的改进[J]. 岩土工程学报, 34 (3): 504-507.

    Tao X X, Chen F, Sun X D. 2012. Improvement of source spectrum model for synthesis of strong ground motion[J]. Chinese Journal of Geotechnical Engineering, 34 (3): 504-507 (in Chinese).
    王国新. 2001. 强地震动衰减研究[D]. 哈尔滨: 中国地震局工程力学研究所: 64-77.

    Wang G X. 2001. Study on Strong Ground Motion Attenuation[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 64-77 (in Chinese).
    王晓荣, 易立新, 李鹏. 2011. 利用随机有限断层法计算海河断裂的地震动[J]. 地震研究, 34 (2): 188-193.

    Wang X R, Yi L X, Li P. 2011. Computing the ground motion of the Haihe fault with stochastic finite fault model[J]. Journal of Seismological Research, 34 (2): 188-193 (in Chinese).
    Anderson J G, Hough S E. 1984. A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies[J]. Bull Seismol Soc Am, 74 (5): 1969-1993.
    Atkinson G M, Boore D. 1995. New ground motion relations for eastern North America[J]. Bull Seismol Soc Am, 85 (1): 17-30.
    Atkinson G M, Boore D. 2006. Earthquake ground-motion prediction equation for eastern North America[J]. Bull Seismol Soc Am, 96 (6): 2181-2205.
    Atkinson G M, Goda K, Assatourians K. 2011. Comparison of nonlinear structural responses for accelerograms simulated from the stochastic finite-fault approach versus the hybrid broadband approach[J]. Bull Seismol Soc Am, 101 (6): 2967-2980.
    Beresnev I A, Atkinson G M. 1997. Modeling finite-fault radiation from the spectrum[J]. Bull Seismol Soc Am, 87 (1): 67-84.
    Beresnev I A, Atkinson G M. 1998. FINSIM: A FORTRAN program for simulating stochastic acceleration time histories from finite faults[J]. Seism Res Lett, 69 (1): 27-32.
    Boore D. 1983. Stochastic simulation of high-frequency ground motion based on seismological models of the radiated spectra[J]. Bull Seismol Soc Am, 73 (6): 1865-1894.
    Boore D. 2003. Simulation of ground motion using the stochastic method[J]. Pure Appl Geophys, 160 (3/4): 635-676.
    Boore D. 2009. Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM[J]. Bull Seismol Soc Am, 99 (6): 3202-3216.
    Hartzell S. 1978. Earthquake aftershocks as Green's functions[J]. Geophys Res Lett, 5 (1): 1-14.
    Hough S E, Anderson J G. 1988. High frequency spectra observed at Anza California: Implications for Q structure[J]. Bull Seismol Soc Am, 78 (2): 692-707.
    Kanamori H, Rivera L. 2004. Static and dynamic scaling relations for earthquakes and their implications for rupture speed and stress drop[J]. Bull Seismol Soc Am, 94 (1): 314-319.
    Motazedian D, Atkinson G M. 2005. Stochastic finite-fault modeling based on a dynamic corner frequency[J]. Bull Seismol Soc Am, 95 (3): 995-1010.
    Roverlli A, Bonamassa O, Cocco M, Dibona M, Mazza S. 1988. Scaling laws and spectral parameters of the ground motion in active extensional areas in Italy[J]. Bull Seismol Soc Am, 78 (2): 530-560.
    Wells D, Coppersmith K. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bull Seismol Soc Am, 84 (4): 974-1002.
  • Related Articles

  • Cited by

    Periodical cited type(6)

    1. 胡宗芳,胡清雄,蔡贇,张长瑞,史全党,徐桂红,覃建强,解远刚,邓申申,朱鹤文,白雪. 微重力技术在中深层气藏开发上应用:以新疆油田滴西121井区为例. CT理论与应用研究(中英文). 2025(01): 99-109 .
    2. 郑爱萍,刘欢,黄后传,赵婧含,杨登杰,马建强,李玄. 基于时移微重力监测技术的SAGD蒸汽腔扩展规律研究. 新疆石油地质. 2024(06): 680-686 .
    3. 申宇彤,杨光亮,谈洪波,王嘉沛,张明辉,申重阳. 川滇及邻区布格重力异常与地壳密度结构研究进展. 地球与行星物理论评. 2022(03): 316-330 .
    4. 徐伟民,陈石,阮明明,杨锦玲,韩建成,李红蕾,卢红艳. 川滇地区陆地流动重力测网场源分辨能力评估. 地震. 2021(01): 191-204 .
    5. 蔡贇,王真理,梁瑶,张舒扬,陈桂廷,刘净余. 双树复小波变换在时移微重力监测上的应用——以辽河油田SAGD区为例. 地球物理学进展. 2021(02): 549-558 .
    6. 李芳,王林飞,何辉. 基于二维经验模式分解的重力资料多尺度分析. 物探与化探. 2018(04): 731-737 .

    Other cited types(2)

Catalog

    Article views (691) PDF downloads (39) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return