Huang Xing, Gao Yuan. 2014: Reviews on the anisotropy studies in the Tibetan Plateau and its adjacent areas. Acta Seismologica Sinica, 36(6): 1141-1151. DOI: 10.3969/j.issn.0253-3782.2014.06.015
Citation: Huang Xing, Gao Yuan. 2014: Reviews on the anisotropy studies in the Tibetan Plateau and its adjacent areas. Acta Seismologica Sinica, 36(6): 1141-1151. DOI: 10.3969/j.issn.0253-3782.2014.06.015

Reviews on the anisotropy studies in the Tibetan Plateau and its adjacent areas

More Information
  • Received Date: January 01, 2014
  • Revised Date: April 07, 2014
  • Published Date: October 31, 2014
  • Tibetan Plateau is known as the roof of the world. It is a young continental-continental collisional orogenic belt. The Indian Plate and Eurasian Plate collide there together. It is of significance for us to reveal the deep characteristics of each block in the Tibetan Plateau and to understand the interior mechanism of continental deformation. This paper briefly described the current four mainstream kinetic models of Tibetan Plateau, i.e., subduction model, collision model, extrusion model, and delamination-slab breakoff model. Followed by an overview of the research progress of anisotropy in the Tibetan Plateau and its adjacent areas, this paper discussed the future trend of anisotropy studies. Several issues need to be paid attention to in anisotropy studies: ① a variety of sources resulting in anisotropy; ② relationship between anisotropy and deep structure; ③ application of the surface wave. In order to better explain the anisotropy, we have to understand the relationship between deep structure and anisotropy, finding more sophisticated research tools. For now, the surface wave and body wave inversion can be combined to better constrain the anisotropic resolution. Geodynamics simulation and seismic anisotropy may also be combined as one of the future trend.
  • 高原, 滕吉文. 2005. 中国大陆地壳与上地幔地震各向异性研究[J]. 地球物理学进展, 20(1): 180-185.

    Gao Y, Teng J W. 2005. Studies on seismic anisotropy in the crust and mantle on Chinese mainland[J]. Progress in Geophysics, 20(1): 180-185 (in Chinese).
    高原, 王琼, 赵博, 石玉涛. 2013. 龙门山断裂带中南段的一个破裂空段: 芦山地震的震后效应[J]. 中国科学: 地球科学, 43(6): 1038-1046.

    Gao Y, Wang Q, Zhao B, Shi Y T. 2013. A rupture blank zone in middle south part of Longmenshan faults: Effect after Lushan MS7.0 earthquake of 20 April 2013 in Sichuan, China[J]. Science China: Earth Sciences,57(9): 2036-2044.
    嵇少丞, Mainprice D. 1989. 晶格优选定向和下地壳地震波速各向异性[J]. 地震地质, 11(4): 15-23.

    Ji S C, Mainprice D. 1989. Seismic anisotropy in the lower crust induced by the lattice preferred orientations of minerals[J]. Seismology and Geology,11(4): 15-23 (in Chinese).
    姜枚, 许志琴, Hirn A, 刘妍, 董英君, 薛光琦, 钱辉. 2001. 青藏高原及其部分邻区地震各向异性和上地幔特征[J]. 地球学报, 22(2): 111-116.

    Jiang M, Xu Z J, Hirn A, Liu Y, Dong Y J, Xue G Q, Qian H. 2001. Teleseimic anisotropy and corresponding features of the upper mantle in Tibet Plateau and its neighboring areas[J]. Acta Geoscientia Sinica,22(2): 111-116 (in Chinese).
    金振民, 嵇少丞, 金淑燕. 1994. 橄榄石晶格优选方位和上地幔地震波速各向异性[J]. 地球物理学报, 37(4): 469-477.

    Jin Z M, Ji S C, Jin S Y. 1994. Lattice preferred orientation of olivines and seismic anisotropy in the upper mantle[J]. Acta Geophysica Sinica,37(4): 469-477 (in Chinese).
    吕庆田, 马开义, 姜枚, Hirn A, Nercessian A. 1996. 青藏高原南部下的横波各向异性[J]. 地震学报, 18(2): 215-223.

    Lü Q T, Ma K Y, Jiang M, Hirn A, Nercessian A. 1996. Shear-wave anisotropy beneath southern Tibet[J]. Acta Seismologica Sinica,18(2): 215-223 (in Chinese).
    苏伟, 王椿镛, 黄忠贤. 2008. 青藏高原及邻区的Rayleigh面波的方位各向异性[J]. 中国科学: D辑, 38(6): 674-682.

    Su W, Wang C Y, Huang Z X. 2008. Rayleigh wave azimuthal anisotropy in Tibet Plateau and its neighboring areas[J]. Science in China: Series D,38(6): 674-682 (in Chinese).
    石玉涛, 高原, 张永久, 王辉, 姚志祥. 2013. 松潘-甘孜地块东部、 川滇地块北部与四川盆地西部的地壳剪切波分裂[J]. 地球物理学报, 56(2): 481-494.

    Shi Y T, Gao Y, Zhang Y J, Wang H, Yao Z X. 2013. Shear-wave splitting in the crust in eastern Songpan-Garzê block, Sichuan-Yunnan block and western Sichuan basin[J]. Chinese Journal of Geophysics,56(2): 481-494 (in Chinese).
    滕吉文, 张中杰, 王光杰, 张秉铭, 王铁男. 2000. 地球内部各圈层介质的地震各向异性与地球动力学[J]. 地球物理学进展, 15(1): 1-35.

    Teng J W, Zhang Z J, Wang G J, Zhang B M, Wang T N. 2000. The seismic anisotropy and geodynamics of earth's interior media[J]. Progress in Geophysics,15(1): 1-35 (in Chinese).
    王琼. 2012. 青藏高原东部边缘重点构造部位地震各向异性研究[D]. 北京: 中国地震局地震预测研究所: 1-118.

    Wang Q. 2012. Seismic Anisotropy in Typical Tectonic Zones of Eastern Margin of Qinghai-Tibet Plateau[D]. Beijing: Institute of Earthquake Science, China Earthquake Administration: 1-118 (in Chinese).
    王琼, 高原, 石玉涛, 吴晶. 2013. 青藏高原东北缘上地幔地震各向异性: 来自SKS、 PKS和SKKS震相分裂的证据[J]. 地球物理学报, 56(3): 892-905.

    Wang Q, Gao Y, Shi Y T, Wu J. 2013. Seismic anisotropy in the uppermost mantle beneath the northeastern margin of Qinghai-Tibet Plateau: Evidence from shear wave splitting of SKS, PKS and SKKS[J]. Chinese Journal of Geophysics,56(3): 892-905 (in Chinese).
    王永锋, 金振民. 2005. 地震波各向异性: 窥测地球深部构造的"探针"[J]. 地球科学进展, 20(9): 946-953.

    Wang Y F, Jin Z M. 2005. Seismic anisotropy: A probe to understand the structure in earth's interior[J]. Advances in Earth Science,20(9): 946-953 (in Chinese).
    许志琴, 姜枚, 杨经绥, 薛光琦, 宿和平, 李海兵, 崔军文, 吴才来, 梁凤华. 2004. 青藏高原的地幔结构: 地幔羽、 地幔剪切带及岩石圈俯冲板片的拆沉[J]. 地学前缘, 11(4): 329-343.

    Xu Z Q, Jiang M, Yang J S, Xue G Q, Su H P, Li H B, Cui J W, Wu C L, Liang F H. 2004. Mantle structure of Qinghai-Tibet Plateau: Mantle plume, mantle shear zone and delamination of lithospheric slab[J]. Earth Science Frontiers,11(4): 329-343 (in Chinese).
    许志琴, 杨经绥, 戚学祥, 崔军文, 李海兵, 陈方远. 2006. 印度-亚洲碰撞: 南北向和东西向拆离构造与现代喜马拉雅造山机制再讨论[J]. 地质通报, 25(1/2): 1-14.

    Xu Z Q, Yang J S, Qi X X, Cui J W, Li H B, Chen F Y. 2006. India-Asia collision: A further discussion of N-S- and E-W-trending detachments and the orogenic mechanism of the modern Himalayas[J]. Geological Bulletin of China,25(1/2): 1-14 (in Chinese).
    杨晓松, 金振民, 马瑾, Huenges E, Schilling F. 2002. 青藏高原北部异常 SKS 分裂成因的初步探讨: 被熔体强化的岩石圈各向异性[J]. 地球物理学报, 45(6): 821-831.

    Yang X S, Jin Z M, Ma J, Huenges E, Schilling F. 2002. Genesis of SKS splitting in the north-central Qinghai-Xizang Plateau: Melt alignment enhanced lithosphere anisotropy[J]. Acta Geophysica Sinica,45(6): 821-831 (in Chinese).
    易桂喜, 姚华建, 朱介寿, van der Hilst R D. 2010. 用Rayleigh面波方位各向异性研究中国大陆岩石圈形变特征[J]. 地球物理学报, 53(2): 256-268.

    Yi G X, Yao H J, Zhu J S, van der Hilst R D. 2010. Lithospheric deformation of continental China from Rayleigh wave azimuthal anisotropy[J]. Chinese Journal of Geophysics,53(2): 256-268 (in Chinese).
    张辉, 高原, 石玉涛, 刘小凤, 王熠熙. 2012. 基于地壳介质各向异性分析青藏高原东北缘构造应力特征[J]. 地球物理学报, 55(1): 95-104.

    Zhang H, Gao Y, Shi Y T, Liu X F, Wang Y X. 2012. Tectonic stress analysis based on the crustal seismic anisotropy in the northeastern margin of Tibetan Plateau[J]. Chinese Journal of Geophysics,55(1): 95-104 (in Chinese).
    郑斯华, 高原. 1994. 中国大陆岩石层的方位各向异性[J]. 地震学报, 16(2): 131-140.

    Zheng S H, Gao Y. 1994. Azimuthal anisotropy in Chinese mainland lithosphere[J]. Acta Seismologica Sinica,16(2): 131-140 (in Chinese).
    钟大赉, 丁林. 1996. 青藏高原的隆起过程及其机制探讨[J]. 中国科学: D辑, 26(4): 289-295.

    Zhong D L, Ding L. 1996. The processes and mechanisms of Tibetan Plateau's uplift[J]. Science in China: Series D,26(4): 289-295 (in Chinese).
    Argand E. 1924. La tectonique de l'Asie[C]//Congrès Géologique International, Comptes Rendus de la XIIIe Session, Premier Fascicule. Liége: H.Vaillant-Carmanne, 7: 171-372.
    Chen W P, zalaybey S. 1998. Correlation between seismic anisotropy and Bouguer gravity anomalies in Tibet and its implications for lithosphere structures[J]. Geophys J Int, 135(1): 93-101.
    Chen W P, Martin M, Tseng T L, Nowack R L, Hung S H, Huang B S. 2010. Shear-wave birefringence and current configuration of converging lithosphere under Tibet[J]. Earth Planet Sci Lett,295(1/2): 297-304.
    Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology,28(8): 703-706.
    Clark M K, Bush J W M, Royden L H. 2005. Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau[J]. Geophys J Int,162(2): 575-590.
    Copley A. 2008. Kinematics and dynamics of the southeastern margin of the Tibetan Plateau[J]. Geophys J Int,174(3): 1081-1100.
    Dewey J F, Burke K C A. 1973. Tibetan Variscan and Precambrian basement reactivation: Products of continental collision[J]. J Geology,81(6): 683-692.
    England P, Houseman G. 1986. Finite strain calculations of continental deformation, 2: Comparison with the India-Asia collision zone[J]. J Geophys Res,91(B3): 3664-3676.
    England P, Molnar P. 1997. Active deformation of Asia: From kinematics to dynamics[J]. Science,278(5338): 647-650.
    Hess H H. 1964. Seismic anisotropy of the uppermost mantle under oceans[J]. Nature,203(4945): 629-631.
    Hirn A, Jiang M, Sapin M, Diaz J, Nercessian A, Lu Q T, Lepine J C, Shi D N, Sachpazi M, Pandey M R, Ma K, Gallart J. 1995. Seismic anisotropy as an indicator of mantle flow beneath the Himalayas and Tibet[J]. Nature,375(6532): 571-574.
    Holt W. 2000. Correlated crust and mantle strain fields in Tibet[J]. Geology,28(1): 67-70.
    Huang W-C, Ni J F, Tilmann F, Nelson D, Guo J R, Zhao W J, Mechie J, Kind R, Saul J, Rapine R, Hearn T M. 2000. Seismic polarization anisotropy beneath the central Tibetan Plateau[J]. J Geophys Res,105(B12): 27979-27989.
    Lav J, Avouac J P, Lacassin R, Tapponnier P, Montagner J P. 1996. Seismic anisotropy beneath Tibet: Evidence for eastward extrusion of the Tibetan lithosphere?[J]. Earth Planet Sci Lett,140(1/2/3/4): 83-96.
    Lin F C, Ritzwoller M H, Snieder R. 2009. Eikonal tomography: Surface wave tomography by phase front tracking across a regional broad-band seismic array[J]. Geophys J Int,177(3): 1091-1110.
    Lin F C, Ritzwoller M H. 2011. Helmholtz surface wave tomography for isotropic and azimuthally anisotropic structure[J]. Geophys J Int,186(3): 1104-1120.
    Mcnamara D E, Owens T J, Silver P G, Wu F T. 1994. Shear wave anisotropy beneath the Tibetan Plateau[J]. J Geophys Res,99(B7): 13655-13665.
    Nelson K D, Zhao W, Brown L D, Kuo J, Che J, Liu X, Klemperer S L, Makovsky Y, Meissner R, Mechie J, Kind R, Wenzel F, Ni J, Nabelek J, Leshou C, Tan H, Wei W, Jones A G, Booker J, Unsworth M, Kidd W S F, Hauck M, Alsdorf D, Ross A, Cogan M, Wu C, Sandvol E, Edwards M. 1996. Partially molten middle crust beneath southern Tibet: Synthesis of Project INDEPTH results[J]. Science,274(5293): 1684-1688.
    Ozacar A A, Zandt G. 2004. Crustal seismic anisotropy in central Tibet: Implications for deformational style and flow in the crust[J]. Geophys Res Lett,31: L23601. doi:10.1029/2004GL021096.
    Poirier J P, Price G D. 1999. Primary slip system of epsilon-iron and anisotropy of the Earth's inner core[J]. Physics Earth Planet Inter,110(3/4): 147-156.
    Rabbel W, Money W D. 1996. Seismic anisotropy of the crystalline crust: What does it tell us?[J]. Terra Nova,8(1): 16-21.
    Royden L H, Burchfiel B C, King R W, Wang E, Chen Z, Shen F, Liu Y P. 1997. Surface deformation and lower crustal flow in eastern Tibet[J]. Science,276(5313): 788-790.
    Sandvol E, Ni J, Kind R, Zhao W J. 1997. Seismic anisotropy beneath the southern Himalayas-Tibet collision zone[J]. J Geophys Res,102(B8): 17813-17823.
    Smith G P, Wiens D A, Fischer K M, Dorman L M, Webb S C, Hildebrand J A. 2001. A complex pattern of mantle flow in the Lau backarc[J]. Science,292(5517): 713-716.
    Stehly L, Campillo M, Shapiro N M. 2007. Travel time measurements from noise correlation: Stability and detection of instrumental time-shifts[J]. Geophys J Int,171(1): 223-230.
    Sun Y, Niu F L, Liu H F, Chen Y L, Liu J X. 2012. Crustal structure and deformation of the SE Tibetan Plateau revealed by receiver function data[J]. Earth Planet Sci Lett,349-350: 186-197.
    Tapponnier P, Molnar P. 1976. Slip-line field theory and large scale continental tectonics[J]. Nature,264(5584): 319-324.
    Tapponnier P, Peltzer G, Le Dain A, Armijo R, Cobbold P. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology,10(12): 611-616.
    Tapponnier P, Xu Z Q, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang J. 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science,294(5547): 1671-1677.
    Vinnik L P, Makeyeva L I, Milev A, Usenko A Y. 1992. Global patterns of azimuthal anisotropy and deformations in the continental mantle[J]. Geophys J Int,111(3): 433-447.
  • Related Articles

Catalog

    Article views (624) PDF downloads (22) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return