Zuo ZHAOBONG, GUO LUCAN hr. 1985: STUDY OF THE SYNTHETIC CALIBRATION FUNCTION OF BODY WAVE MAGNITUDE. Acta Seismologica Sinica, 7(2): 158-170.
Citation: Zuo ZHAOBONG, GUO LUCAN hr. 1985: STUDY OF THE SYNTHETIC CALIBRATION FUNCTION OF BODY WAVE MAGNITUDE. Acta Seismologica Sinica, 7(2): 158-170.

STUDY OF THE SYNTHETIC CALIBRATION FUNCTION OF BODY WAVE MAGNITUDE

More Information
  • Published Date: August 31, 2011
  • The synthetic calibration functions of body-wave magnitude for Chinese stations are formulated in terms of P and 8 wave travel times from earthquakes in the Chinese region and its corresponding velocity distribution model in the crust and mantle and absorption band Q model for the earth (abbreviated ABM-Q model), discussing the effects of geometrical spreading of seismic waves and absorption by the medium in the earth. The results obtained demonstrate:(1)A factor T1-a in the synthetic calibration function is introduced through the frequency-dependence of quality factor Q. That isf(△, h, T) = g(△, h) + a(△, h)/T1-aWhere the parameter a characterizes the degree of frequency-dependence of the quality factor Q in the ABM-Q model, but here it represents the period-dependence of the calibration functions. This is a theoretical improvement on the calibration functions of Gutenberg and Riehter (1956) and of Nortmann and Duda (1982).(2)The term a (A, h) characterizing effect of absorption has higher compensation obviously in the upper mantle and the bottom mantle in the new calibration functions, in comparison with Nortmann and Dudas (1982). This is consistent, so far as known with the tendency of Q distribution with depth.(3)The tendency of underestimating magnitude by Gutenberg and Riehter (1956) calibration functions in the short period range and by Nortmann and Duda (1982) calibration function in the long period range is improved in the preliminary practical tests, so that the magnitudes determinated from different seismic wave periods are basically consistent.(4)The new calibration functions can be used as basic data in formulating the calibration function of body-wave spectral magnitude.
  • [1] Abe, K., Magnitudes of Iarge shallow earthquakes from 1904——1980, Phys. Earth Planet. Inter,271, 72——92, 1981.

    [2] Abe, K. and S. Noguchi, Determination of magnitude for large shallow earthquakes 1898——1917,Phys. Earth Planet. Inter., 32, 1, 45——59, 1983.

    [3] Kanamori, H., Magnitude scale and quantification of earthquakes, Tectonophysics, 93, 185——199,1983.

    [4] Purcaru, G. and H. Berckhemer, Quantitative relations of seismic source parameters and a classification of earthquakes, Tectonophysics, 84, 1, 57——128, 1982.

    [5] Purcaru, G., S. J. Dada, and H. Berckhemer, Earthquake classification using spectral magnitudes,引自1983年德国汉堡IUGG第18届会议(待发表).

    [6] Dada, ,. J.,震级与地震定量化,地震地磁观测与研究,阎志德、左兆荣译,4, 9, 69 92,1983

    [7] Gutenberg, B. and C. F. Richter, Magnitude and energy of earthquakes, Ann. di Geofss. (Rome),9, 1——15, 1956.

    [8] Miyamura, S., Considerations for the body——wave magnitude determination in the recent EarthquakeData Report of the United States Geological Survey, Tectonophysics, 93, 313——318, 1983.

    [9] Duda, S. J., TtaveI time and body wave magnitude, Pure Appl. Geophys. 87, 13——37, 1971.

    [10] 左兆荣、郭履灿、许忠淮,地震波的几何扩故效应,地震地磁观测与研究,4, 52——63,1983.

    [11] Solovieva, O. N., Determination of magnitude of deep——focus earthquakes, Izvestiya AN SSSR, Ser.Fixika Zemli, 1, Moscow, 25——35, 1978.

    [12] Christoskov, L., et al., Homogeneous magnitude system of the Eurasian continent, Tectonophysics,49, 131——138, 1978.

    [13] Veith, K. F. and G. E. Clawson, Magnitude from short——period P——wave data, BSSA, 62, 435————452.1972.

    [14] Nortmann, R. and S. J. Duda, The amplitude spectra of P——and S——wave and the body——wave magnitude of earthquakes, Tectonophysics, 84, 17——32, 1982.

    [15] Nortmann, R. and S. J. Duda, Determination of spectral properties of earthquakes from their magnitudes, Tectonophysics, 93, 251——275, 1983.

    [16] Anderson, D. L., and R. S. Hart, Q of the Earth, J. Geophys. Res., 83 5869——5882, 1978.

    [17] 郭友梅,阎志德等,中国地区地震P波和s波走时丧,地震学报,3, 197——209, 1951.

    [18] 阎志德,郭履灿,唐友梅,中国地区地震P波和S波走时表灼实用检验,西北地震学报,3, 13——17,1981,

    [19] Minster, J. B. and D. L. Anderson, A model of dislocation——controlled rheology for the mantle,Phil. Tra,as. R. Soc. Lond. A, 299, 319——356, 1981.

    [20] Gordon, R. B. and C. D,. Nelson, Anelastic properties of the earth, Rev. Geophys.,457——474.1966.

    [21] Anderson, D. L., and R. S. Hart, Attenuation models of the earth, PF,ys. Earth Plaaet. Inter., 16,289——306, 1978.

    [22] Dziewonski, A. VI. and D. L. Anderson, Preliminary reference earth model, Phys. Earth Planet. Inter., 25, 297——356, 1981.

    [23] Der, Z. A., et al., An investigation of the regional variations and frequency dependence of anelastic attenuation in the mantle under the United States in the O.S——4Hz band, Geophys. J. R. astr. Soc.,69, 1, 67——100, 1982.

    [24] CIements, J. R., Intrinsic Q and its frequency dependence, Pfzys. Earth Planet. Inter., 27, 3, 286——299, 1982.

    [25] Anderson, D. L. and J. W., Given, Absorption band Q model for the earth, J. Geophys. Res.,87, 3893——3904, 1982.

    [26] Bullen, K. E., An Introduction to the Theory of Seismology, Cambridge University Press, London,1963.

    [1] Abe, K., Magnitudes of Iarge shallow earthquakes from 1904——1980, Phys. Earth Planet. Inter,271, 72——92, 1981.

    [2] Abe, K. and S. Noguchi, Determination of magnitude for large shallow earthquakes 1898——1917,Phys. Earth Planet. Inter., 32, 1, 45——59, 1983.

    [3] Kanamori, H., Magnitude scale and quantification of earthquakes, Tectonophysics, 93, 185——199,1983.

    [4] Purcaru, G. and H. Berckhemer, Quantitative relations of seismic source parameters and a classification of earthquakes, Tectonophysics, 84, 1, 57——128, 1982.

    [5] Purcaru, G., S. J. Dada, and H. Berckhemer, Earthquake classification using spectral magnitudes,引自1983年德国汉堡IUGG第18届会议(待发表).

    [6] Dada, ,. J.,震级与地震定量化,地震地磁观测与研究,阎志德、左兆荣译,4, 9, 69 92,1983

    [7] Gutenberg, B. and C. F. Richter, Magnitude and energy of earthquakes, Ann. di Geofss. (Rome),9, 1——15, 1956.

    [8] Miyamura, S., Considerations for the body——wave magnitude determination in the recent EarthquakeData Report of the United States Geological Survey, Tectonophysics, 93, 313——318, 1983.

    [9] Duda, S. J., TtaveI time and body wave magnitude, Pure Appl. Geophys. 87, 13——37, 1971.

    [10] 左兆荣、郭履灿、许忠淮,地震波的几何扩故效应,地震地磁观测与研究,4, 52——63,1983.

    [11] Solovieva, O. N., Determination of magnitude of deep——focus earthquakes, Izvestiya AN SSSR, Ser.Fixika Zemli, 1, Moscow, 25——35, 1978.

    [12] Christoskov, L., et al., Homogeneous magnitude system of the Eurasian continent, Tectonophysics,49, 131——138, 1978.

    [13] Veith, K. F. and G. E. Clawson, Magnitude from short——period P——wave data, BSSA, 62, 435————452.1972.

    [14] Nortmann, R. and S. J. Duda, The amplitude spectra of P——and S——wave and the body——wave magnitude of earthquakes, Tectonophysics, 84, 17——32, 1982.

    [15] Nortmann, R. and S. J. Duda, Determination of spectral properties of earthquakes from their magnitudes, Tectonophysics, 93, 251——275, 1983.

    [16] Anderson, D. L., and R. S. Hart, Q of the Earth, J. Geophys. Res., 83 5869——5882, 1978.

    [17] 郭友梅,阎志德等,中国地区地震P波和s波走时丧,地震学报,3, 197——209, 1951.

    [18] 阎志德,郭履灿,唐友梅,中国地区地震P波和S波走时表灼实用检验,西北地震学报,3, 13——17,1981,

    [19] Minster, J. B. and D. L. Anderson, A model of dislocation——controlled rheology for the mantle,Phil. Tra,as. R. Soc. Lond. A, 299, 319——356, 1981.

    [20] Gordon, R. B. and C. D,. Nelson, Anelastic properties of the earth, Rev. Geophys.,457——474.1966.

    [21] Anderson, D. L., and R. S. Hart, Attenuation models of the earth, PF,ys. Earth Plaaet. Inter., 16,289——306, 1978.

    [22] Dziewonski, A. VI. and D. L. Anderson, Preliminary reference earth model, Phys. Earth Planet. Inter., 25, 297——356, 1981.

    [23] Der, Z. A., et al., An investigation of the regional variations and frequency dependence of anelastic attenuation in the mantle under the United States in the O.S——4Hz band, Geophys. J. R. astr. Soc.,69, 1, 67——100, 1982.

    [24] CIements, J. R., Intrinsic Q and its frequency dependence, Pfzys. Earth Planet. Inter., 27, 3, 286——299, 1982.

    [25] Anderson, D. L. and J. W., Given, Absorption band Q model for the earth, J. Geophys. Res.,87, 3893——3904, 1982.

    [26] Bullen, K. E., An Introduction to the Theory of Seismology, Cambridge University Press, London,1963.
  • Cited by

    Periodical cited type(11)

    1. 韩建平,徐金玉. 汶川地震强余震统计特性及地震动衰减关系. 世界地震工程. 2019(01): 9-16 .
    2. 盛书中,万永革,徐锡伟,程佳,杨宜海,蒋长胜,胡晓辉,杨帆. 用大量地震震源机制解检验2008年汶川地震对后续地震的触发作用. 地球物理学报. 2019(12): 4588-4603 .
    3. Song Jin,Jiang Haikun,Meng Lingyuan,Zang Yang. Earthquake Probability of the “Seismic Gap” on the Longmenshan Fault. Earthquake Research in China. 2018(01): 15-27 .
    4. 宋金,蒋海昆,孟令媛,臧阳. 龙门山断裂带上“破裂空段”的发震概率研究. 中国地震. 2017(02): 219-228 .
    5. 李昌珑,高孟潭,徐伟进,吴健. 强震对大地震发生率的影响研究及在鲜水河断裂带的应用. 地球物理学报. 2016(08): 2833-2842 .
    6. 仲秋,申文豪,史保平. 近断层应力变化快速计算方法及对强余震空间分布的指示意义:以M_w7.9汶川地震为例. 地球物理学报. 2015(01): 172-183 .
    7. 刘博研,史保平,雷建设. 2008年和2014年于田地震对周边断层发震概率的影响. 地球物理学报. 2015(02): 463-473 .
    8. 米琦,申文豪,史保平. 基于经验模型和物理模型研究2013 M_S7.0芦山地震余震序列. 地球物理学报. 2015(06): 1919-1930 .
    9. 王小娜,于湘伟,章文波. 芦山震区地壳三维P波速度精细结构及地震重定位研究. 地球物理学报. 2015(04): 1179-1193 .
    10. 王小娜,于湘伟,章文波,王思琳. 龙门山断裂带南段地壳一维P波速度结构. 地震研究. 2015(01): 16-24+181 .
    11. 段云歌,苏金蓉,陈天长. 半几何方法及其在汶川8.0级地震中的应用. 四川地震. 2015(02): 5-8 .

    Other cited types(9)

Catalog

    Article views (1027) PDF downloads (94) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return