CAI NAICHENGup, LIU WENTAIup2com s. 1984: THEORY OF COMPLETE FAILURE OF INCLUSION MATERIAL AT THE EARTHQUAKE SOURCE(1)--STRESS DISTRIBU TION OF AN ELLIPTICAL INCULUSION OF DIFFERENT METERIAL. Acta Seismologica Sinica, 6(4): 429-439.
Citation: CAI NAICHENGup, LIU WENTAIup2com s. 1984: THEORY OF COMPLETE FAILURE OF INCLUSION MATERIAL AT THE EARTHQUAKE SOURCE(1)--STRESS DISTRIBU TION OF AN ELLIPTICAL INCULUSION OF DIFFERENT METERIAL. Acta Seismologica Sinica, 6(4): 429-439.

THEORY OF COMPLETE FAILURE OF INCLUSION MATERIAL AT THE EARTHQUAKE SOURCE(1)--STRESS DISTRIBU TION OF AN ELLIPTICAL INCULUSION OF DIFFERENT METERIAL

More Information
  • Published Date: August 31, 2011
  • For a two-dimensional infinite medium containing an elliptical inclusion of different material, elastic stress distribution formulas are derived. It is pointed out that in the inclusion theory of B.T. Brady there are two errors, namely, (1) the stress component parallel to the minor axis within the elliptical inclusion is not a tensile stress, under far field compression in two directions; (2) shear stress within the inclusion is neither a function of position nor a second order quantity and thus can not be neglected.
  • [1] Donnell, L. H., Stress concentrations due to elliptical discontinuities in plates under edge forces Theodore V. Karman Anniversary Volume, California Institute of Technology, Pasadena, Calif.293——309, 1941.

    [2] Brady, B. T., Theory of earthquakes, I, A scale Independent theory of rock failure, Pure Appli Geophys. 112, 4, 1974.

    [3] Мусхелишвили,Н.И.,Некоторые оснвые задаги математигеской теорий упругости AH CCCP 1954.(数学弹性力学的几个基本间题,赵惠元译,科学出版社,1958).

    [4] Knott,J.F., Fundamental of fracture mechanics, Chapter 3,Landon Butterwarths, 1973.

    [5] Jaeger,J,C., Elasticity, fracture and flow with engineering and geological applications, John Wiley and Sons,New York,1964.

    [1] Donnell, L. H., Stress concentrations due to elliptical discontinuities in plates under edge forces Theodore V. Karman Anniversary Volume, California Institute of Technology, Pasadena, Calif.293——309, 1941.

    [2] Brady, B. T., Theory of earthquakes, I, A scale Independent theory of rock failure, Pure Appli Geophys. 112, 4, 1974.

    [3] Мусхелишвили,Н.И.,Некоторые оснвые задаги математигеской теорий упругости AH CCCP 1954.(数学弹性力学的几个基本间题,赵惠元译,科学出版社,1958).

    [4] Knott,J.F., Fundamental of fracture mechanics, Chapter 3,Landon Butterwarths, 1973.

    [5] Jaeger,J,C., Elasticity, fracture and flow with engineering and geological applications, John Wiley and Sons,New York,1964.
  • Related Articles

Catalog

    Article views (1027) PDF downloads (71) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return