Turn off MathJax
Article Contents
Zhu X H,Fang S K,Lin J M. 2023. Seismic monitoring of typhoons based on seismology. Acta Seismologica Sinica,45(3):1−20 doi: 10.11939/jass.20220191
Citation: Zhu X H,Fang S K,Lin J M. 2023. Seismic monitoring of typhoons based on seismology. Acta Seismologica Sinica45(3):1−20 doi: 10.11939/jass.20220191

Seismic monitoring of typhoons based on seismology

doi: 10.11939/jass.20220191
  • Received Date: 2022-10-11
  • Rev Recd Date: 2023-01-20
  • Available Online: 2023-02-23
  • Typhoons are one of the most destructive meteorological disasters all over the world. However, because of the lack of in situ observations under such extreme weather conditions during the typhoon’s passage, typhoon monitoring and forecasting are still not able to meet the needs of typhoon prevention and mitigation. In recent years, a new method of typhoon monitoring based on seismological observations and techniques has emerged and developed, utilizing typhoon-generated seismic noise as a proxy. This paper reviews the recent progress in study of typhoon-induced microseisms, including the generation mechanisms, source location distribution, and its potential implications on typhoon monitoring and ocean wave parameter inversion. Future prospects on seismic monitoring of typhoons are provided and discussed. This newly emerging method may provide interdisciplinary support to traditional observation and investigation of typhoons.


  • loading
  • [1]
    Chen D L,Lin J M,Ni S D,Zhu X Y,Zheng H. 2018. Characteristics of seismic noise on ocean islands in Northwest Pacific and its oceanographic interpretation[J]. Chinese Journal of Geophysics,61(1):230–241 (in Chinese).
    Duan Y H,Fang J,Cheng Z Q,Xu J,Li Q Q,Zhan R F,Qian C H,Chen J,Ren F M. 2020. Advances and trends in tropical cyclone research and forecasting:An overview of the ninth world meteorological organization international workshop on tropical cyclones (IWTC-9)[J]. Acta Meteorologica Sinica,78(3):537–550 (in Chinese).
    Lin J M,Fang S K,Ni S D. 2021. Investigation of typhoon Kalmaegi-induced microseism source regions using combined seismic arrays[J]. Chinese Journal of Geophysics,64(12):4341–4354 (in Chinese).
    Liu Q X,Qiu Y,Zeng X F,Wang F Y,Duan Y H,Jia Y P,Zhou M. 2020. Distribution characteristics of Rayleigh wave noise sources derived from records of a large-aperture seismic array in Northwest China[J]. Chinese Journal of Geophysics,63(7):2534–2547 (in Chinese).
    Lu L Y,He Z Q,Ding Z F,Yao Z X. 2009. Investigation of ambient noise source in North China array[J]. Chinese Journal of Geophysics,52(10):2566–2572 (in Chinese).
    Xia Y J,Ni S D,Zeng X F. 2011. Polarization research on seismic noise before Wenchuan earthquake[J]. Chinese Journal of Geophysics,54(10):2590–2596 (in Chinese).
    Xu Y X,Luo Y H. 2015. Methods of ambient noise-based seismology and their applications[J]. Chinese Journal of Geophysics,58(8):2618–2636 (in Chinese).
    Zheng L L,Lin J M,Ni S D,Zhu H H,Zheng H. 2017. Characteristics and generation mechanisms of double frequency microseisms generated by typhoons[J]. Chinese Journal of Geophysics,60(1):187–197 (in Chinese).
    Zheng Y,Cheng S C,Cai Q B,Ren F M. 2018. Analysis on the forecast deviation of typhoon Kujira (1508) in track and rainfall distribution[J]. Meteorological Monthly,44(1):170–179 (in Chinese).
    Zhou L,Chen D K,Lei X T,Wang W,Wang G H,Han G J. 2019. Progress and perspective on interactions between ocean and typhoon[J]. Chinese Science Bulletin,64(1):60–72 (in Chinese). doi: 10.1360/N972018-00668
    Amante C,Eakins B. 2009. ETOPO1 1 arc-minute global relief model:Procedures,data sources and analysis[J]. Psychologist,16:20–25.
    Ardhuin F,Stutzmann E,Schimmel M,Mangeney A. 2011. Ocean wave sources of seismic noise[J]. J Geophys Res:Oceans,116(C9):C09004.
    Ardhuin F,Balanche A,Stutzmann E,Obrebski M. 2012. From seismic noise to ocean wave parameters:General methods and validation[J]. J Geophys Res:Oceans,117(C5):C05002.
    Ardhuin F,Herbers T H C. 2013. Noise generation in the solid Earth,oceans and atmosphere,from nonlinear interacting surface gravity waves in finite depth[J]. J Fluid Mech,716:316–348. doi: 10.1017/jfm.2012.548
    Ardhuin F,Gualtieri L,Stutzmann E. 2015. How ocean waves rock the Earth:Two mechanisms explain microseisms with periods 3 to 300 s[J]. Geophys Res Lett,42(3):765–772. doi: 10.1002/2014GL062782
    Barruol G,Davy C,Fontaine F R,Schlindwein V,Sigloch K. 2016. Monitoring austral and cyclonic swells in the “Iles Eparses” (Mozambique channel) from microseismic noise[J]. Acta Oecol,72:120–128. doi: 10.1016/j.actao.2015.10.015
    Behr Y,Townend J,Bowen M,Carter L,Gorman R,Brooks L,Bannister S. 2013. Source directionality of ambient seismic noise inferred from three-component beamforming[J]. J Geophys Res:Solid Earth,118(1):240–248. doi: 10.1029/2012JB009382
    Bensen G D,Ritzwoller M H,Barmin M P,Levshin A L,Lin F,Moschetti M P,Shapiro M M,Yang Y. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophys J Int,169(3):1239–1260. doi: 10.1111/j.1365-246X.2007.03374.x
    Bromirski P D,Flick R E,Graham N. 1999. Ocean wave height determined from inland seismometer data:Implications for investigating wave climate changes in the NE Pacific[J]. J Geophys Res:Oceans,104(C9):20753–20766. doi: 10.1029/1999JC900156
    Bromirski P D. 2001. Vibrations from the “Perfect Storm”[J]. Geochem Geophys Geosyst,2(7):2000GC000119.
    Bromirski P D,Duennebier F K. 2002. The near-coastal microseism spectrum:Spatial and temporal wave climate relationships[J]. J Geophys Res:Solid Earth,107(B8):2166. doi: 10.1029/2001JB000265
    Bromirski P D,Duennebier F K,Stephen R A. 2005. Mid-ocean microseisms[J]. Geochem Geophys Geosyst,6(4):Q04009.
    Bromirski P D,Gerstoft P. 2009. Dominant source regions of the Earth’s “Hum” are coastal[J]. Geophys Res Lett,36(13):L13303. doi: 10.1029/2009GL038903
    Bromirski P D,Stephen R A,Gerstoft P. 2013. Are deep-ocean-generated surface-wave microseisms observed on land?[J]. J Geophys Res:Solid Earth,118(7):3610–3629. doi: 10.1002/jgrb.50268
    Brooks L A,Townend J,Gerstoft P,Bannister S,Carter L. 2009. Fundamental and higher-mode Rayleigh wave characteristics of ambient seismic noise in New Zealand[J]. Geophys Res Lett,36(23):L23303. doi: 10.1029/2009GL040434
    Butler R,Aucan J. 2018. Multisensor,microseismic observations of a hurricane transit near the ALOHA cabled observatory[J]. J Geophys Res:Solid Earth,123(4):3027–3046. doi: 10.1002/2017JB014885
    Chen Y N,Gung Y,You S H,Hung S H,Chiao L Y,Huang T Y,Chen Y L,Liang W T,Jan S. 2011. Characteristics of short period secondary microseisms (SPSM) in Taiwan:The influence of shallow ocean strait on SPSM[J]. Geophys Res Lett,38(4):L04305.
    Chen Z,Gerstoft P,Bromirski P D. 2016. Microseism source direction from noise cross-correlation[J]. Geophys J Int,205(2):810–818. doi: 10.1093/gji/ggw055
    Chevrot S,Sylvander M,Benahmed S,Ponsolles C,Lefèvre J M,Paradis D. 2007. Source locations of secondary microseisms in western Europe:Evidence for both coastal and pelagic sources[J]. J Geophys Res:Solid Earth,112(B11):B11301. doi: 10.1029/2007JB005059
    Chi W C,Chen W J,Kuo B Y,Dolenc D. 2010. Seismic monitoring of western Pacific typhoons[J]. Mar Geophys Res,31(4):239–251. doi: 10.1007/s11001-010-9105-x
    Cutroneo L,Ferretti G,Barani S,Scafidi D,De Leo F,Besio G,Capello M. 2021. Near real-time monitoring of significant sea wave height through microseism recordings:Analysis of an exceptional sea storm event[J]. J Mar Sci Eng,9(3):319. doi: 10.3390/jmse9030319
    Davy C,Barruol G,Fontaine F R,Sigloch K,Stutzmann E. 2014. Tracking major storms from microseismic and hydroacoustic observations on the seafloor[J]. Geophys Res Lett,41(24):8825–8831. doi: 10.1002/2014GL062319
    Davy C,Barruol G,Fontaine F R,Cordier E. 2016. Analyses of extreme swell events on La Réunion Island from microseismic noise[J]. Geophys J Int,207(3):1767–1782. doi: 10.1093/gji/ggw365
    Donn W L. 1966. Microseisms[J]. Earth-Sci Rev,1(2/3):213–230.
    Euler G G,Wiens D A,Nyblade A A. 2014. Evidence for bathymetric control on the distribution of body wave microseism sources from temporary seismic arrays in Africa[J]. Geophys J Int,197(3):1869–1883. doi: 10.1093/gji/ggu105
    Fan W Y,McGuire J J,De Groot-Hedlin C D,Hedlin M A H,Coats S,Fiedler J W. 2019. Stormquakes[J]. Geophys Res Lett,46(22):12909–12918. doi: 10.1029/2019GL084217
    Fang S K,Lin J M,Ni S D,Li X F,Xu X Q,Zheng H,Xu W. 2020. Improving seismic remote sensing of typhoon with a three-dimensional Earth model[J]. J Acoust Soc Am,148(2):478–491. doi: 10.1121/10.0001624
    Farra V,Stutzmann E,Gualtieri L,Schimmel M,Ardhuin F. 2016. Ray-theoretical modeling of secondary microseism P waves[J]. Geophys J Int,206(3):1730–1739. doi: 10.1093/gji/ggw242
    Feng X P,Chen X F. 2022. Rayleigh‐wave dispersion curves from energetic hurricanes in the southeastern United States[J]. Bull Seismol Soc Am,112(2):622–633. doi: 10.1785/0120210192
    Ferretti G,Zunino A,Scafidi D,Barani S,Spallarossa D. 2013. On microseisms recorded near the Ligurian coast (Italy) and their relationship with sea wave height[J]. Geophys J Int,194(1):524–533. doi: 10.1093/gji/ggt114
    Ferretti G,Scafidi D,Cutroneo L,Gallino S,Capello M. 2016. Applicability of an empirical law to predict significant sea-wave heights from microseisms along the Western Ligurian Coast (Italy)[J]. Cont Shelf Res,122:36–42. doi: 10.1016/j.csr.2016.03.029
    Ferretti G,Barani S,Scafidi D,Capello M,Cutroneo L,Vagge G,Besio G. 2018. Near real-time monitoring of significant sea wave height through microseism recordings:An application in the Ligurian Sea (Italy)[J]. Ocean Coast Manag,165:185–194. doi: 10.1016/j.ocecoaman.2018.08.023
    Friedrich A,Krüger F,Klinge K. 1998. Ocean-generated microseismic noise located with the Grafenberg array[J]. J Seismol,2(1):47–64. doi: 10.1023/A:1009788904007
    Gal M,Reading A M,Ellingsen S P,Koper K D,Burlacu R,Gibbons S J. 2016. Deconvolution enhanced direction of arrival estimation using one- and three-component seismic arrays applied to ocean induced microseisms[J]. Geophys J Int,206(1):345–359. doi: 10.1093/gji/ggw150
    Gal M,Reading A M,Rawlinson N,Schulte-Pelkum V. 2018. Matched field processing of three-component seismic array data applied to Rayleigh and Love microseisms[J]. J Geophys Res:Solid Earth,123(8):6871–6889. doi: 10.1029/2018JB015526
    Gerstoft P,Fehler M C,Sabra K G. 2006. When Katrina hit California[J]. Geophys Res Lett,33(17):L17308. doi: 10.1029/2006GL027270
    Gerstoft P,Shearer P M,Harmon N,Zhang J. 2008. Global P,PP,and PKP wave microseisms observed from distant storms[J]. Geophys Res Lett,35(23):L23306. doi: 10.1029/2008GL036111
    Gerstoft P,Bromirski P D. 2016. “Weather bomb” induced seismic signals[J]. Science,353(6302):869–870. doi: 10.1126/science.aag1616
    Gualtieri L,Stutzmann E,Capdeville Y,Ardhuin F,Schimmel M,Mangeney A,Morelli A. 2013. Modelling secondary microseismic noise by normal mode summation[J]. Geophys J Int,193(3):1732–1745. doi: 10.1093/gji/ggt090
    Gualtieri L,Serretti P,Morelli A. 2014a. Finite-difference P wave travel time seismic tomography of the crust and uppermost mantle in the Italian region[J]. Geochem Geophys Geosyst,15(1):69–88. doi: 10.1002/2013GC004988
    Gualtieri L,Stutzmann E,Farra V,Capdeville Y,Schimmel M,Ardhuin F,Morelli A. 2014b. Modelling the ocean site effect on seismic noise body waves[J]. Geophys J Int,197(2):1096–1106. doi: 10.1093/gji/ggu042
    Gualtieri L,Stutzmann E,Capdeville Y,Farra V,Mangeney A,Morelli A. 2015. On the shaping factors of the secondary microseismic wavefield[J]. J Geophys Res:Solid Earth,120(9):6241–6262. doi: 10.1002/2015JB012157
    Gualtieri L,Camargo S J,Pascale S,Pons F M E,Ekström G. 2018. The persistent signature of tropical cyclones in ambient seismic noise[J]. Earth Planet Sci Lett,484:287–294. doi: 10.1016/j.jpgl.2017.12.026
    Gualtieri L,Bachmann E,Simons F J,Tromp J. 2020. The origin of secondary microseism Love waves[J]. Proc Natl Acad Sci USA,117(47):29504–29511. doi: 10.1073/pnas.2013806117
    Gualtieri L,Bachmann E,Simons F J,Tromp J. 2021. Generation of secondary microseism Love waves:Effects of bathymetry,3-D structure and source seasonality[J]. Geophys J Int,226(1):192–219. doi: 10.1093/gji/ggab095
    Guo Z,Xue M,Aydin A,Ma Z T. 2020. Exploring source regions of single- and double-frequency microseisms recorded in eastern North American margin (ENAM) by cross-correlation[J]. Geophys J Int,220(2):1352–1367.
    Hasselmann K. 1963. A statistical analysis of the generation of microseisms[J]. Rev Geophys,1(2):177–209. doi: 10.1029/RG001i002p00177
    Hillers G,Graham N,Campillo M,Kedar S,Landès M,Shapiro N. 2012. Global oceanic microseism sources as seen by seismic arrays and predicted by wave action models[J]. Geochem Geophys Geosyst,13(1):Q01021.
    IRIS DMC. 2011. Data Services Products: BackProjection[EB/OL]. [2022-05-12]. http://ds.iris.edu/ds/products/backprojection/.
    Japan Meteorological Agency. 2022. Best track data [EB/OL]. [2022-04-06]. https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/trackarchives.html.
    Juretzek C,Hadziioannou C. 2016. Where do ocean microseisms come from? A study of Love-to-Rayleigh wave ratios[J]. J Geophys Res:Solid Earth,121(9):6741–6756. doi: 10.1002/2016JB013017
    Kedar S,Longuet-Higgins M,Webb F,Graham N,Clayton R,Jones C. 2008. The origin of deep ocean microseisms in the North Atlantic Ocean[J]. Proc Roy Soc Math Phys Eng Sci,464(2091):777–793.
    Kedar S. 2011. Source distribution of ocean microseisms and implications for time-dependent noise tomography[J]. Compt Rendus Geosci,343(8/9):548–557.
    Kennett B L N,Engdahl E R,Buland R. 1995. Constraints on seismic velocities in the Earth from traveltimes[J]. Geophys J Int,122(1):108–124. doi: 10.1111/j.1365-246X.1995.tb03540.x
    Knaff J A,DeMaria M,Molenar D A,Sampson C R,Seybold M G. 2011. An automated,objective,multiple-satellite-platform tropical cyclone surface wind analysis[J]. J Appl Meteorol Climatol,50(10):2149–2166. doi: 10.1175/2011JAMC2673.1
    Koper K D,De Foy B,Benz H. 2009. Composition and variation of noise recorded at the Yellowknife Seismic Array,1991−2007[J]. J Geophys Res:Solid Earth,114(Bl0):B10310.
    Koper K D,Hawley V L. 2010. Frequency dependent polarization analysis of ambient seismic noise recorded at a broadband seismometer in the central United States[J]. Earthq Sci,23(5):439–447. doi: 10.1007/s11589-010-0743-5
    Landès M,Hubans F,Shapiro N M,Paul A,Campillo M. 2010. Origin of deep ocean microseisms by using teleseismic body waves[J]. J Geophys Res:Solid Earth,115(B5):B05302.
    Le Pape F,Craig D,Bean C J. 2021. How deep ocean-land coupling controls the generation of secondary microseism Love waves[J]. Nat Commun,12(1):2332. doi: 10.1038/s41467-021-22591-5
    Lepore S,Markowicz K,Grad M. 2016. Impact of wind on ambient noise recorded by seismic array in northern Poland[J]. Geophys J Int,205(3):1406–1413. doi: 10.1093/gji/ggw093
    Lin J M,Lin J,Xu M. 2017. Microseisms generated by super typhoon Megi in the Western Pacific Ocean[J]. J Geophys Res:Oceans,122(12):9518–9529. doi: 10.1002/2017JC013310
    Lin J M,Fang S K,Li X F,Wu R H,Zheng H. 2018a. Seismological observations of ocean swells induced by typhoon Megi using dispersive microseisms recorded in coastal areas[J]. Remote Sens,10(9):1437. doi: 10.3390/rs10091437
    Lin J M,Wang Y T,Wang W T,Li X F,Fang S K,Chen C,Zheng H. 2018b. Seismic remote sensing of super typhoon Lupit (2009) with seismological array observation in NE China[J]. Remote Sens,10(2):235. doi: 10.3390/rs10020235
    Lin J Y,Lee T C,Hsieh H S,Chen Y F,Lin Y C,Lee H H,Wen Y Y. 2014. A study of microseisms induced by typhoon nanmadol using ocean-bottom seismometers[J]. Bull Seismol Soc Am,104(5):2412–2421. doi: 10.1785/0120130237
    Liu Q X,Koper K D,Burlacu R,Ni S D,Wang F Y,Zou C Q,Wei Y H,Gal M,Reading A M. 2016. Source locations of teleseismic P,SV,and SH waves observed in microseisms recorded by a large aperture seismic array in China[J]. Earth Planet Sci Lett,449:39–47. doi: 10.1016/j.jpgl.2016.05.035
    Longuet-Higgins M S. 1950. A theory of the origin of microseisms[J]. Philos Trans Roy Soc A Math Phys Sci,243(857):1–35.
    Maurya S,Taira T,Romanowicz B. 2019. Location of seismic “Hum” sources following storms in the North Pacific Ocean[J]. Geochem Geophys Geosyst,20(3):1454–1467. doi: 10.1029/2018GC008112
    Munk W H. 1950. Origin and generation of waves[J]. Coast Eng Proc,1(1):1.
    Neale J,Harmon N,Srokosz M. 2017. Monitoring remote ocean waves using P-wave microseisms[J]. J Geophys Res:Oceans,122(1):470–483.
    Nishida K. 2013. Earth’s background free oscillations[J]. Annu Rev Earth Planet Sci,41(1):719–740. doi: 10.1146/annurev-earth-050212-124020
    Nishida K,Takagi R. 2016. Teleseismic S wave microseisms[J]. Science,353(6302):919–921. doi: 10.1126/science.aaf7573
    Nishida K. 2017. Ambient seismic wave field[J]. Proc Jpn Acad,93(7):423–448.
    Pyle M L,Koper K D,Euler G G,Burlacu R. 2015. Location of high-frequency P wave microseismic noise in the Pacific Ocean using multiple small aperture arrays[J]. Geophys Res Lett,42(8):2700–2708. doi: 10.1002/2015GL063530
    Reading A M,Koper K D,Gal M,Graham L S,Tkalčić H,Hemer M A. 2014. Dominant seismic noise sources in the Southern Ocean and West Pacific,2000−2012,recorded at the Warramunga Seismic Array,Australia[J]. Geophys Res Lett,41(10):3455–3463. doi: 10.1002/2014GL060073
    Retailleau L,Gualtieri L. 2019. Toward high-resolution period-dependent seismic monitoring of tropical cyclones[J]. Geophys Res Lett,46(3):1329–1337. doi: 10.1029/2018GL080785
    Retailleau L,Gualtieri L. 2021. Multi-phase seismic source imprint of tropical cyclones[J]. Nat Commun,12(1):2064. doi: 10.1038/s41467-021-22231-y
    Rhie J,Romanowicz B. 2004. Excitation of Earth’s continuous free oscillations by atmosphere-ocean-seafloor coupling[J]. Nature,431(7008):552–556. doi: 10.1038/nature02942
    Rhie J,Romanowicz B. 2006. A study of the relation between ocean storms and the Earth’s hum[J]. Geochem Geophys Geosyst,7(10):Q10004.
    Rost S,Thomas C. 2002. Array seismology:Methods and applications[J]. Rev Geophys,40(3):1008.
    Roux P,Sabra K G,Gerstoft P,Kuperman W A,Fehler M C. 2005. P-waves from cross-correlation of seismic noise[J]. Geophys Res Lett,32(19):L19303.
    Schimmel M,Stutzmann E,Ardhuin F,Gallart J. 2011. Polarized Earth’s ambient microseismic noise[J]. Geochem Geophys Geosyst,12(7):Q07014.
    Schweitzer J, Fyen J, Mykkeltveit S, Gibbons S J, Pirli M, Kühn M, Kværna T. 2012. Seismic arrays[G]//New Manual of Seismological Observatory Practice 2 (NMSOP-2). Potsdam: Deutsches GeoForschungsZentrum, 1–80.
    Shapiro N M,Campillo M,Stehly L,Ritzwoller M H. 2005. High-resolution surface-wave tomography from ambient seismic noise[J]. Science,307(5715):1615–1618. doi: 10.1126/science.1108339
    Shen W S,Ritzwoller M H. 2016. Crustal and uppermost mantle structure beneath the United States[J]. J Geophys Res:Solid Earth,121(6):4306–4342. doi: 10.1002/2016JB012887
    Simmons N A,Myers S C,Johannesson G,Matzel E. 2012. LLNL-G3Dv3:Global P wave tomography model for improved regional and teleseismic travel time prediction[J]. J Geophys Res:Solid Earth,117(B10):B10302.
    Stehly L,Campillo M,Shapiro N M. 2006. A study of the seismic noise from its long-range correlation properties[J]. J Geophys Res:Solid Earth,111(B10):B10306. doi: 10.1029/2005JB004237
    Sufri O,Koper K D,Burlacu R,De Foy B. 2014. Microseisms from superstorm sandy[J]. Earth Planet Sci Lett,402:324–336. doi: 10.1016/j.jpgl.2013.10.015
    Sun T H Z,Xue M,Le K P,Zhang Y W,Xu H P. 2013. Signatures of ocean storms on seismic records in South China Sea and East China Sea[J]. Mar Geophys Res,34(3):431–448.
    Tanimoto T,Ishimaru S,Alvizuri C. 2006. Seasonality in particle motion of microseisms[J]. Geophys J Int,166(1):253–266. doi: 10.1111/j.1365-246X.2006.02931.x
    Tanimoto T,Hadziioannou C,Igel H,Wassermann J,Schreiber U,Gebauer A,Chow B. 2016. Seasonal variations in the Rayleigh-to-Love wave ratio in the secondary microseism from colocated ring laser and seismograph[J]. J Geophys Res: Solid Earth,121(4):2447–2459. doi: 10.1002/2016JB012885
    Tian Y,Ritzwoller M H. 2015. Directionality of ambient noise on the Juan de Fuca plate:Implications for source locations of the primary and secondary microseisms[J]. Geophys J Int,201(1):429–443. doi: 10.1093/gji/ggv024
    Traer J,Gerstoft P,Bromirski P D,Shearer P M. 2012. Microseisms and hum from ocean surface gravity waves[J]. J Geophys Res:Solid Earth,117(B11):B11307.
    Ward Neale J,Harmon N,Srokosz M. 2018. Improving microseismic P wave source location with multiple seismic arrays[J]. J Geophys Res:Solid Earth,123(1):476–492. doi: 10.1002/2017JB015015
    Webb S C. 1998. Broadband seismology and noise under the ocean[J]. Rev Geophys,36(1):105–142. doi: 10.1029/97RG02287
    Webb S C. 2007. The Earth’s ‘hum’ is driven by ocean waves over the continental shelves[J]. Nature,445(7129):754–756. doi: 10.1038/nature05536
    Wong W K,Tse S M,Chan P W. 2014. Impacts of reconnaissance flight data on numerical simulation of tropical cyclones over South China Sea[J]. Meteor Appl,21(4):831–847. doi: 10.1002/met.1412
    Xiao H,Xue M,Yang T,Liu C G,Hua Q F,Xia S H,Huang H B,Le B M,Yu Y Q,Huo D,Pan M H,Li L,Gao J Y. 2018. The characteristics of microseisms in South China Sea:Results from a combined data set of OBSs,broadband land seismic stations,and a global wave height model[J]. J Geophys Res:Solid Earth,123(5):3923–3942. doi: 10.1029/2017JB015291
    Xiao H,Tanimoto T,Xue M. 2021. Study of S-wave microseisms generated by storms in the Southeast Australia and North Atlantic[J]. Geophys Res Lett,48(15):e2021GL093728.
    Xu Y,Koper K D,Burlacu R. 2017. Lakes as a source of short-period (0.5−2 s) microseisms[J]. J Geophys Res:Solid Earth,122(10):8241–8256. doi: 10.1002/2017JB014808
    Yang Y J,Ritzwoller M H. 2008. Characteristics of ambient seismic noise as a source for surface wave tomography[J]. Geochem Geophys Geosyst,9(2):Q02008.
    Ying Y Z,Bean C J,Bromirski P D. 2014. Propagation of microseisms from the deep ocean to land[J]. Geophys Res Lett,41(18):6374–6379. doi: 10.1002/2014GL060979
    Zeng X F,Ni S D. 2010. A persistent localized microseismic source near the Kyushu Island,Japan[J]. Geophys Res Lett,37(24):L24307.
    Zhang J,Gerstoft P,Shearer P M. 2009. High-frequency P-wave seismic noise driven by ocean winds[J]. Geophys Res Lett,36(9):L09302.
    Zhang J,Gerstoft P,Shearer P M. 2010a. Resolving P-wave travel-time anomalies using seismic array observations of oceanic storms[J]. Earth Planet Sci Lett,292(3/4):419–427.
    Zhang J,Gerstoft P,Bromirski P D. 2010b. Pelagic and coastal sources of P-wave microseisms:Generation under tropical cyclones[J]. Geophys Res Lett,37(15):L15301.
    Ziane D,Hadziioannou C. 2019. The contribution of multiple scattering to Love wave generation in the secondary microseism[J]. Geophys J Int,217(2):1108–1122. doi: 10.1093/gji/ggz056
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (272) PDF downloads(53) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint