Yin Xingyao, Zhou Jianke, Wu Guochen, Liang Kai. 2014: Dispersion analysis for the finite element algorithm in acoustic wave equation numerical simulation. Acta Seismologica Sinica, 36(5): 944-1898. DOI: 10.3969/j.issn.0253-3782.2014.05.017
Citation: Yin Xingyao, Zhou Jianke, Wu Guochen, Liang Kai. 2014: Dispersion analysis for the finite element algorithm in acoustic wave equation numerical simulation. Acta Seismologica Sinica, 36(5): 944-1898. DOI: 10.3969/j.issn.0253-3782.2014.05.017

Dispersion analysis for the finite element algorithm in acoustic wave equation numerical simulation

More Information
  • Received Date: February 22, 2014
  • Revised Date: March 20, 2014
  • Published Date: August 31, 2014
  • This paper focuses on the dispersion problems of finite element algorithm in numerical simulation of seismic wave, and the dispersion function of two-dimensional acoustic wave equation is derived by employing lumped mass matrix and bilinear interpolation finite element algorithm. And, we compared quantitatively the effect of incident direction with the variable ratio of vertical to horizontal grid, spatial sampling interval, seismic wave frequency, and formation velocity on numerical dispersion. The numerical examples and the forward modeling indicate, if we want to suppress the numerical dispersion effectively, it should not be less than 20 samples within the wavelength corresponding to peak frequency of source wavelet; reducing the ratio of vertical to horizontal grid can suppress the numerical dispersion with small incident angle (the angle between the direction of wave propagation and the z axis) remarkably; the slower the propagation velocity of the seismic wave with higher frequency, the more serious its dispersion is; when the ratio of phase velocity to the corresponding frequency is less than twice of spatial sampling interval, not only the numerical dispersion becomes very serious, but also the aliasing phenomenon will happen.
  • 董良国, 李培明. 2004. 地震波传播数值模拟中的频散问题[J]. 天然气工业, 24(6): 53-56.

    Dong L G, Li P M. 2004. Dispersive problem in seismic wave propagation numerical modeling[J]. Natural Gas Industry, 24(6): 53-56 (in Chinese).
    杜世通. 1982. 变速不均匀介质中波动方程的有限元法数值解[J]. 华东石油学院学报, 6(2): 1-20.

    Du S T. 1982. Finite element numerical solution of wave propagation in non-homogeneous medium with variable velocities[J]. Journal of East China Petroleum Institute, 6(2): 1-20 (in Chinese).
    房营光, 莫海鸿. 2000. 有限元网格中波动的频散与稳定性的一种改进方法[J]. 地震工程与工程振动, 20(1): 21-26.

    Fang Y G, Mo H H. 2000. An improved method for dispersion and stability of wave motion in finite element meshes[J]. Journal of Earthquake Engineering and Engineering Vibration, 20(1): 21-26 (in Chinese).
    孙成禹. 2007. 地震波理论与方法[M]. 东营: 中国石油大学出版社: 31-37.

    Sun C Y. 2007. Theory and Methods of Seismic Waves[M]. Dongying: China University of Petroleum Press: 31-37 (in Chinese).
    孙成禹, 宫同举, 张玉亮, 张文颖. 2009. 波动方程有限差分法中的频散与假频分析[J]. 石油地球物理勘探, 44(1): 43-48.

    Sun C Y, Gong T J, Zhang Y L, Zhang W Y. 2009. Analysis on dispersion and alias in finite-difference solution of wave equation[J]. Oil Geophysical Prospecting, 44(1): 43-48 (in Chinese).
    徐世浙. 1994. 地球物理中的有限元法[M]. 北京: 科学出版社: 135-146.

    Xu S Z. 1994. Finite Element Method for Geophysics[M]. Beijing: Science Press: 135-146 (in Chinese).
    薛东川, 王尚旭. 2008. 利用组合质量矩阵压制数值频散[J]. 石油地球物理勘探, 43(3): 318-320.

    Xue D C, Wang S X. 2008. Using combined mass matrix to suppress numerical dispersion[J]. Oil Geophysical Prospecting, 43(3): 318-320 (in Chinese).
    Abboud N N, Pinsky P M. 1992. Finite element dispersion analysis for the three-dimensional second-order scalar wave equation[J]. Int J Numer Meth Engng, 35(6): 1183-1218.
    Christon M A. 1999. The influence of the mass matrix on the dispersive nature of the semi-discrete, second-order wave equation[J]. Comput Methods Appl Mech Engng, 173(1): 147-166.
    De Basabe J D, Sen M K. 2007. Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations[J]. Geophysics, 72(6): T81-T95.
    Liu J B, Sharan S K, Yao L. 1994. Wave motion and its dispersive properties in a finite element model with distortional elements[J]. Comput Struct, 52(2): 205-214.
    Liu Y, Sen M K. 2009. A new time-space domain high-order finite-difference method for the acoustic wave equation[J].J Comput Phys, 228(23): 8779-8806.
    Mullen R, Belytschko T. 1982. Dispersion analysis of finite element semidiscretizations of the two-dimensional wave equation[J]. Int J Numer Meth Engng, 18(1): 11-29.
    Seriani G, Oliveira S P. 2008. Dispersion analysis of spectral element methods for elastic wave propagation[J]. Wave Motion, 45(6): 729-744.
  • Related Articles

Catalog

    Article views (543) PDF downloads (23) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return