Citation: | Yan J R,Zhang Y S,Kan W L. 2022. Review on research of ground motion site adjustment coefficient. Acta Seismologica Sinica,44(5):783−796. DOI: 10.11939/jass.20220086 |
薄景山. 1998. 场地分类和设计反应谱调整方法研究(博士后研究报告)[R]. 哈尔滨: 中国地震局工程力学研究所: 55–58.
|
Bo J S. 1998. Site Classification and Design Response Spectrum Adjustment Method (Postdoctoral Research Report)[R]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 55–58 (in Chinese).
|
崔昊,丁海平. 2016. 基于KiK-net强震记录的场地调整系数估计[J]. 地震工程与工程振动,36(4):147–152. doi: 10.13197/j.eeev.2016.04.147.cuih.017
|
Cui H,Ding H P. 2016. Estimation of site coefficient based on KiK-net strong-motion seismograph network[J]. Earthquake Engineering and Engineering Vibration,36(4):147–152 (in Chinese).
|
丁海平,王康. 2022. 基于反演基岩地震波的场地调整系数估计[J]. 地震工程与工程振动,42(1):25–33. doi: 10.13197/j.eeed.2022.0103
|
Ding H P,Wang K. 2022. Estimation of site coefficient based on inversion of bedrock input[J]. Earthquake Engineering and Engineering Vibration,42(1):25–33 (in Chinese).
|
窦立军. 2001. 场地条件与设计地震动[D]. 哈尔滨: 中国地震局工程力学研究所: 20–21.
|
Dou L J. 2001. Site Conditions and Design Ground Motion[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 20–21 (in Chinese).
|
耿淑伟. 2005. 抗震设计规范中地震作用的规定[D]. 哈尔滨: 中国地震局工程力学研究所: 67–68.
|
Geng S W. 2005. Regulation of Seismic Action in Earthquake Resistant Design Code[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 67–68 (in Chinese).
|
郭锋,吴东明,许国富,伋雨林. 2011. 场地条件对抗震设计反应谱最大值的影响[J]. 土木工程与管理学报,28(1):69–72. doi: 10.3969/j.issn.2095-0985.2011.01.015
|
Guo F,Wu D M,Xu G F,Ji Y L. 2011. Effect of site condition on the maximum value of seismic design response spectrum[J]. Journal of Civil Engineering and Management,28(1):69–72 (in Chinese).
|
郭晓云,薄景山,巴文辉. 2012. 汶川地震不同场地反应谱平台值统计分析[J]. 地震工程与工程振动,32(4):54–62. doi: 10.13197/j.eeev.2012.04.006
|
Guo X Y,Bo J S,Ba W H. 2012. Statistical analysis of peak flat values of response spectra in different site conditions based on Wenchuan strong ground motions[J]. Earthquake Engineering and Engineering Vibration,32(4):54–62 (in Chinese).
|
蒋通,邢海灵. 2007. 水平土层地震反应分析考虑频率相关性的等效线性化方法[J]. 岩土工程学报,29(2):218–223. doi: 10.3321/j.issn:1000-4548.2007.02.011
|
Jiang T,Xing H L. 2007. An equivalent linear method considering frequency-dependent soil properties for seismic response analysis[J]. Chinese Journal of Geotechnical Engineering,29(2):218–223 (in Chinese).
|
李洪达. 2015. 基于NGA-West2数据的场地系数研究[D]. 哈尔滨: 哈尔滨工业大学: 59–60.
|
Li H D. 2015. Site Coefficients From NGA-West2 Data[D]. Harbin: Harbin Institute of Technology: 59–60 (in Chinese).
|
李瑞山,袁晓铭. 2019. 场地放大系数的理论解答[J]. 岩土工程学报,41(6):1066–1073.
|
Li R S,Yuan X M. 2019. Theoretical solution of site amplification coefficient[J]. Chinese Journal of Geotechnical Engineering,41(6):1066–1073 (in Chinese).
|
李小军,彭青. 2001. 不同类别场地地震动参数的计算分析[J]. 地震工程与工程振动,21(1):29–36. doi: 10.3969/j.issn.1000-1301.2001.01.005
|
Li X J,Peng Q. 2001. Calculation and analysis of earthquake ground motion parameters for different site categories[J]. Earthquake Engineering and Engineering Vibration,21(1):29–36 (in Chinese).
|
李小军. 2013. 地震动参数区划图场地条件影响调整[J]. 岩土工程学报,35(增刊):21–29.
|
Li X J. 2013. Adjustment of seismic ground motion parameters considering site effects in seismic zonation map[J]. Chinese Jour- nal of Geotechnical Engineering,35(S2):21–29 (in Chinese).
|
卢滔. 2003. 响嘡台阵场地特征及其反应的分析[D]. 哈尔滨: 中国地震局工程力学研究所: 75–77.
|
Lu T. 2003. Analysis of Site Characteristics and Reaction of the Boomed Array in Xiangtang[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 75–77 (in Chinese).
|
栾极. 2012. 设计反应谱场地放大系数和动力放大系数的研究[D]. 武汉: 华中科技大学: 30–31.
|
Luan J. 2012. Study on Site Amplification Coefficient and Dynamic Amplification Coefficient of Seismic Design Response Spectrum[D]. Wuhan: Huazhong University of Science and Technology: 30–31 (in Chinese).
|
吕红山,赵凤新. 2007. 适用于中国场地分类的地震动反应谱放大系数[J]. 地震学报,29(1):67–76. doi: 10.3321/j.issn:0253-3782.2007.01.008
|
Lü H S,Zhao F X. 2007. Site coefficients suitable to China site category[J]. Acta Seismologica Sinica,29(1):67–76 (in Chinese).
|
吕悦军,彭艳菊,兰景岩,孟小红. 2008. 场地条件对地震动参数影响的关键问题[J]. 震灾防御技术,3(2):126–135. doi: 10.3969/j.issn.1673-5722.2008.02.003
|
Lü Y J,Peng Y J,Lan J Y,Meng X H. 2008. Some key problems about site effects on seismic ground motion parameters[J]. Technology for Earthquake Disaster Prevention,3(2):126–135 (in Chinese).
|
齐鑫,肖遥. 2012. 下辽河地区典型土层地震反应时域和频域方法对比[J]. 地震工程与工程振动,32(1):23–29. doi: 10.13197/j.eeev.2012.01.003
|
Qi X,Xiao Y. 2012. Comparison of seismic responses of typical soil layers in Liaohe River plain by using time domain method and frequency domain method[J]. Earthquake Engineering and Engineering Vibration,32(1):23–29 (in Chinese).
|
荣棉水,李小军,卢滔,黄雅虹,吕悦军. 2013. 对含厚软表层海域工程场地设计地震动参数确定的一点建议[J]. 地震学报,35(2):262–271. doi: 10.3969/j.issn.0253-3782.2013.02.012
|
Rong M S,Li X J,Lu T,Huang Y H,Lü Y J. 2013. Suggestion on determination of design ground motion parameters for offshore engineering sites with deep soft surface layers[J]. Acta Seismologica Sinica,35(2):262–271 (in Chinese).
|
史大成. 2013. 区域性场地地震动放大研究及应用[D]. 哈尔滨: 中国地震局工程力学研究所: 86–87.
|
Shi D C. 2013. Study on Ground Motion Amplification of Regional Site and Application[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 86–87 (in Chinese).
|
王金元. 2013. 抗震设计规范中竖向地震作用规定的研究[D]. 哈尔滨: 哈尔滨工业大学: 35–36.
|
Wang J Y. 2013. Study on Vertical Earthquake Action Stipulated in Seismic Design Specification[D]. Harbin: Harbin Institute of Technology: 35–36 (in Chinese).
|
闫静茹,张郁山,郝明辉. 2020. 山东省不同场地PGA放大影响研究[J]. 地震研究,43(3):569–575. doi: 10.3969/j.issn.1000-0666.2020.03.020
|
Yan J R,Zhang Y S,Hao M H. 2020. Study on amplification effect of peak ground acceleration based on different sites in Shandong Province[J]. Journal of Seismological Research,43(3):569–575 (in Chinese).
|
赵艳,郭明珠,李化明,王文仲. 2009. 对比分析中国有关场地条件对设计反应谱最大值的影响[J]. 地震地质,31(1):186–196. doi: 10.3969/j.issn.0253-4967.2009.01.017
|
Zhao Y,Guo M Z,Li H M,Wang W Z. 2009. Contrast analysis of effect of site condition on the maximum of design response spectra[J]. Seismology and Geology,31(1):186–196 (in Chinese).
|
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2016. GB18306—2015 中国地震动参数区划图[S]. 北京: 中国标准出版社: 240.
|
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration. 2016. Seismic Ground Motion Parameters Zonation Map of China[S]. Beijing: Standards Press of China: 240 (in Chinese).
|
Aboye S A,Andrus R D,Ravichandran N,Bhuiyan A H,Martin J R,Harman N E. 2014. A new seismic site coefficient model based on conditions in the South Carolina coastal plain[J]. Bull Seismol Soc Am,104(6):2866–2883. doi: 10.1785/0120140005
|
Andreotti G, Lai C G, Francesca B, Scandella L. 2013. New soil factors for the ItalianBuilding Code (NTC08) derived from 1D fully stochastic ground response analyses[C]//Proceedings XV Symp. Roma: Italian National Association of Earthquake Engineering: 1–12.
|
Borcherdt R D. 1994. Estimates of site-dependent response spectra for design:Methodology and justification[J]. Earthq Spectra,10(4):617–653. doi: 10.1193/1.1585791
|
Borcherdt R D. 2002. Empirical evidence for site coefficients in building code provisions[J]. Earthq Spectra,18(2):189–217. doi: 10.1193/1.1486243
|
Borcherdt R D, Glassmoyer G, Dietel C, Westerlund R E. 2005. Integrated surface and borehole strong-motion, soil-response arrays in San Francisco, California: Empirical measurements of low-strain site coefficients at site class E and D soil sites[G]//Directions in Strong Motion Instrumentation. Dordrecht: Springer: 55.
|
Borcherdt R D. 2014. Implications of next generation attenuation ground motion prediction equations for site coefficients used in earthquake resistant design[J]. Earthq Eng Struct Dyn,43(9):1343–1360. doi: 10.1002/eqe.2400
|
Choi Y,Stewart J P. 2005. Nonlinear site amplification as function of 30 m shear wave velocity[J]. Earthq Spectra,21(1):1–30. doi: 10.1193/1.1856535
|
Crouse C B,McGuire J W. 1996. Site response studies for purpose of revising NEHRP seismic provisions[J]. Earthq Spectra,12(3):407–439. doi: 10.1193/1.1585891
|
Dobry R, Ramos R, Power M S. 1999. Site Factors and Site Categories in Seismic Codes: Technical Report MCEER-99-0010[R]. New York: Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute: 1−81.
|
European Committee for Standardization. 2003. CEN-EN 1998-1 Eurocode 8: Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings[S]. Brussels: European Committee for Standardization: 19–30.
|
Hwang H H M,Lin H J,Huo J R. 1997. Site coefficients for design of buildings in eastern United States[J]. Soil Dyn Earthq Eng,16(1):29–40. doi: 10.1016/S0267-7261(96)00031-0
|
Idriss H M. 1990. Response of soft soil sites during earthquakes[C]//Proceedings Memorial Symposium to Honor Professor H B Seed. Berkeley: BiTech Publisher: 273–289.
|
Idriss H M. 1991. Earthquake ground motions at soft sites[C]//Proceedings of the Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. St. Louis: University of Missouri-Rolla: 2265–2273.
|
Joyner W B, Boore D M. 2000. Recent developments in earthquake ground-motion estimation[C]//Proc. of Sixth International Conference on Seismic Zonation. California: Earthquake Engineering Research Institute: 3–4.
|
Moon S W,Hashash Y M A,Park D. 2017. USGS hazard map compatible depth-dependent seismic site coefficients for the Upper Mississippi Embayment[J]. KSCE J Civil Eng,21(1):220–231. doi: 10.1007/s12205-016-0681-4
|
Paolucci R,Aimar M,Ciancimino A,Dotti M,Foti S,Lanzano G,Mattevi P,Pacor F,Vanini M. 2021. Checking the site categorization criteria and amplification factors of the 2021 draft of Eurocode 8 Part 1-1[J]. Bull Seismol Soc Am,19(11):4199–4234.
|
Pitilakis K,Riga E,Anastasiadis A,Fotopoulou S,Karafagka S. 2019. Towards the revision of EC8:Proposal for an alternative site classification scheme and associated intensity dependent spectral amplification factors[J]. Soil Dyn Earthq Eng,126:105137. doi: 10.1016/j.soildyn.2018.03.030
|
Régnier J,Bonilla L F,Bard P Y,Bertrand E,Hollender F,Kawase H,Sicilia D,Arduino P,Amorosi A,Asimaki D,Boldini D,Chen L,Chiaradonna A,Demartin F,Elgamal A,Falcone G,Foerster E,Foti S,Garini E,Gazetas G,Gélis C,Ghofrani A,Giannakou A,Gingery J,Glinsky N,Harmon J,Hashash Y,Iai S,Kramer S,Kontoe S,Kristek J,Lanzo G,Lernia A D,Lopez‐caballero F,Marot M,Mcallister G,Mercerat E D,Moczo P,Montoya‐Noguera S,Musgrove M,Nieto‐ferro A,Pagliaroli A,Passeri F,Richterova A,Sajana S,D’avila M P S,Shi J,Silvestri F,Taiebat M,Tropeano G,Vandeputte D,Verrucci L. 2018. PRENOLIN:International benchmark on 1D nonlinear site-response analysis:Validation phase exercise[J]. Bull Seismol Soc Am,108(2):876–900.
|
Rodriguez-Marek A, Bray J D, Abrahamson N. 1999. Characterization of Site Response General Categories, Pacific Earthquake Engineering Research Center Report[R]. Berkeley: Pacific Gas and Electric Company: 75–84.
|
Sandikkaya M A,Akkar S,Bard P Y. 2013. A nonlinear site‐amplification model for the next Pan-European ground-motion prediction equations[J]. Bull Seismol Soc Am,103(1):19–32. doi: 10.1785/0120120008
|
Seyhan E,Stewart J P. 2014. Semi-empirical nonlinear site amplification from NGA-West2 data and simulations[J]. Earthq Spectra,30(3):1241–1256. doi: 10.1193/063013EQS181M
|
Silva W, Darragh R, Gregor N, Martin G, Abrahamson N, Kircher C. 2000. Reassessment of Site Coefficients and Near-fault Factors for Building Code Provisions[R]. Reston, Virginia: U.S. Geological Survey (USGS).
|
Society of Civil Engineerings. 2000. Earthquake Resistance Design Codes in Japan[S]. Tokyo: The Publication Committee of Earthquake Resistant Design Codes of Civil Engineering Structures in Japan: 57.
|
Stewart J P,Liu A H,Choi Y. 2003. Amplification factors for spectral acceleration in tectonically active regions[J]. Bull Seismol Soc Am,93(1):332–352. doi: 10.1785/0120020049
|
Sun J, Idriss I M. 1992. User’s Manual for SHAKE91: A Computer Program for Conducting Equivalent Linear Seismic Response Analyses of Horizontally Layered Soil Deposits[M]. California: University of California: 1–2.
|
Tropeano G,Soccodato F M,Silvestri F. 2018. Re-evaluation of code-specified stratigraphic amplification factors based on Italian experimental records and numerical seismic response analyses[J]. Soil Dyn Earthq Eng,110:262–275. doi: 10.1016/j.soildyn.2017.12.030
|